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Haskell is a modern purely functional programming language, which is easy
to learn, has a beautiful syntax and is very productive. However, one of the
greatest barriers for learning it are monads. Although they are quite simple,
they  can  be  very  confusing  for  a  beginner.  As  I  have  deep  interest  in
extending  Haskell's  deployment  in  the  real  world,  I'm  writing  this
introduction for you.
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1. Preamble
I have written this tutorial for Haskell newcomers, who have some basic understanding
of the language and probably attempted to understand one of the key concepts of it
before,  namely  monads.  If  you  had  difficulties  understanding  them,  or  you  did
understand them, but want some deeper insight into the motivation and background,
then this tutorial is for you.

Haskell is a functional programming language. There is nothing special about this, but
its design makes it easy to learn and comprehend and very effective and efficient in
practice. A very special feature of Haskell is the concept of generalization. That means,
instead of implementing an idea directly, you rather try to find a more general idea,
which implies your idea as a special case. This has the advantage that if you find other
special cases in the future, you don't need to implement them, or at least not fully from
scratch.

However, the traditional programmer never had to face generalization. At most they
faced abstraction, for example in the concept of object-oriented programming. They
preferred to  work with  concrete  and specialized concepts,  i.e.  the  tool  for  the  job.
Unfortunately this attitude is still ubiquitous. The concept of monads is a particularly
sad example, as monads are extremely useful, but Haskell newcomers often give up
understanding them properly, because they are a very abstract structure, which allows
implementing functionality at an incredibly general level.

Some of you may have read Brent Yorgey's  Abstraction,  intuition,  and the "monad
tutorial  fallacy"  [5],  which  explains  very  evidently  why  writing  yet  another
interpretation of monads is useless for a newcomer. When I look around, I see the
above as an additional problem: Many people try to avoid abstract concepts, despite
their convenience, once you understand them. So my main intention with this tutorial is
to defeat the fear of abstract concepts and to shed some light on monads as what they
really are: An abstraction for a certain style of combining computations.
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I  hope,  it  is  helpful  to  you  and  I  would  be  very  grateful  about  any  constructive
feedback from you.

2. Motivation
Haskell [1] is a purely functional programming language. Functions written in it are
referentially transparent.  Intuitively that means that a function called with the same
arguments always gives the same result. More formally, given you have a function f ,
replacing its  call  by its  result  has no effect  on the meaning of the program. So if
f 3 = foo , then you can safely replace any occurence of f 3  by foo  and vice
versa. Purely functional means that the language doesn't allow side-effects to happen in
a way that destroys referential transparency. That way, the result of a function depends
solely on its arguments, hence it has no side effects.

This resembles the mathematical notion of a function, which makes reasoning about the
code much easier and in many cases enables the compiler to optimize much better than
code, that is not referentially transparent. Furthermore the order of evaluation becomes
meaningless. So for an expression (x,y)  the compiler is free to evaluate x  or y  first
or even skip evaluation of either one, if it isn't needed. This gives flexibility (as you
can have infinite data structures or computations, as long as only a finite portion is
used) and high performance. Finally, the compiler is free to take any possible path to
the  result.  This  makes  Haskell  programs  insanely  parallelizable,  as  a  compiler  can
decide to take multiple paths in parallel. It can decide to calculate x  and y  at the same
time.

The opposite of referentially transparent is referentially opaque. A referentially opaque
function is a function that may mean different things and return different results each
time, even if all arguments are the same. The canonical example of this is a random
number generator. In most languages a random number function takes no arguments at
all. Although it may sound counterintuitive, even a function that just prints a fixed text
to the screen and always returns 0, is referentially opaque, because you cannot replace
the function call with 0 without changing the meaning of the program.

As pointed out above, an obvious consequence is that in Haskell  you can't  write a
function random  without arguments, which returns a pseudorandom number, because it
would  not  be  referentially  transparent.  In  fact,  a  function,  which  doesn't  take  any
arguments, isn't even a function in Haskell. It's simply a value. A number of simple
solutions to this problem exist.  One is  to expect a state value as an argument and
produce a new state value together with a pseudorandom number:

random :: RandomState -> (Int, RandomState)

Another  simple solution is  to  expect  a  seed value as  an argument  and produce an
infinite  list  of  pseudorandom  numbers.  You  can  write  this  easily  in  terms  of  the
random  function above:

randomList :: RandomState -> [Int]
randomList state = x : randomList newState
  where
    (x, newState) = random state

So the problem of deterministic sequences like the above can be solved easily, and
compared  to  the  referentially  opaque  random  function,  which  you  usually  find  in
imperative languages, you get a useful feature: You can thread the state, so you can
easily go back to an earlier state or feed two functions with the same pseudorandom
sequence.

What about input/output? A general purpose language is almost useless, if you can't
develop user interfaces or read files. We would like to read keyboard input or print
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things to the terminal. Meet getChar , a hypothetical function, which reads a single
character from the terminal:

getChar :: Char

You will find that this breaks referential transparency, because each reference to this
function may yield a different character. We have seen that we can solve this problem
by expecting a state argument. But what's our state? The state of the terminal? Well,
let's  get  more  general  and  just  pass  the  state  of  the  universe,  which  is  of  the
hypothetical type Universe . So we adjust the type of getChar , and we implement a
twoChars  function to demonstrate how to use the getChar  function:

getChar :: Universe -> (Char, Universe)

twoChars :: Universe -> (Char, Char, Universe)
twoChars world0 = (c1, c2, world2)
  where
    (c1, world1) = getChar world0
    (c2, world2) = getChar world1

We seem to have found a useful solution to our problem. Just pass the state value
around. But there is a problem with this approach. Firstly, of course, that is a lot of
typing for the programmer, since we need to pass the world's state around all the time.
Secondly  and  more  importantly,  what  is  a  very  useful  and  desirable  feature  for
functions like random , becomes the main obstacle for strictly impure operations like
reading keyboard input or writing to the terminal:

strangeChars :: Universe -> (Char, Char)
strangeChars world = (c1, c2)
  where
    (c1, _) = getChar world
    (c2, _) = getChar world

Let's try to understand what the code above is attempting to do. We read the character
c1  from our universe, which is in state world . We also read the character c2  from
the universe with the same state, so we really go back in time. But when do we do
that?  The  order  in  which  c1  and  c2  get  computed  is  undefined,  since  we  didn't
sequence  our  world  state  like  in  the  twoChars  function.  Next  thing  is  that
strangeChars  doesn't return the new state of the universe, so after its values are
demanded,  the  fact  that  it  read  from  the  terminal  is  forgotten,  just  like  it  never
happened.

Conclusion:  We can  thread  the  state  of  a  pseudorandom number  generator  without
problems, but we must not thread the state of the universe! There exist a few solutions
to this problem. For example, the purely functional language Clean  uses uniqueness
types, which is basically the above, but the language detects and thwarts attempts to
thread world state, so I/O with explicit state passing like above becomes consistent.
Haskell takes another approach. Instead of passing the world state explicitly, it employs
a structure from category theory called a monad.

3. An example
As you are reading this tutorial, you have probably already found that there are many
possible interpretations of monads. They are an abstract structure, and at first it can be
difficult to understand where they are useful. The two main interpretations of monads
are  as  containers  and  as  computations.  These  two  explain  very  well  how existing
monads are useful, but firstly in my opinion they still don't tell you how to recognize
things as monads, and secondly they can look quite incompatible at times (although
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they aren't).

So I'm trying to provide you with an idea of monads, that is more generic and allows
you to find familiar patterns in monad usage. Particularly it should make it easy to
recognize monads as such. However, I won't give you a concrete notion yet. Let's start
with a motivating example instead.

Say you have a function, which may not give a result. What would be the type of that
function? The exact square root over the integers is a good example, so let's write it:

isqrt :: Integer -> Integer

What is isqrt 3? What is isqrt (-5)? How do we handle the case where the
computation doesn't have any result? The first idea that comes to mind originates from
the imperative world. We expect the argument to be a square, otherwise we abort the
program with a signal or exception. We say that if the argument is not a square, then
the result is ⊥ or bottom.

The ⊥ value is a theoretical construct. It's the result of a function, which never returns,
so you can't observe that value directly. Examples are functions, which recurse forever
or which throw an exception. In both cases, there is no ordinary returning of a value.

Mathematically  more  correct  would  be  an  approach  where  invalid  arguments  are
impossible by concept:

isqrt :: Square -> Integer

On a first  glance,  this  seems to work,  but  what  if  we need the square root  of  an
Integer? We need to convert it to a Square  first, at which point we're facing the
same problem. Also often we actually want our program to handle the case, where
there is no result. So write a wrapper type Maybe :

data Maybe a = Just a | Nothing

A value of type Maybe a  is either Nothing  or Just x , where x  is of type a . For
example, a value of type Maybe Integer  is either Nothing  or Just x , where x  is
an Integer . So now we can change the type of our integer square root function and
add a (not so optimal, but comprehensible) implementation:

isqrt :: Integer -> Maybe Integer
isqrt x = isqrt' x (0,0)
  where
    isqrt' x (s,r)
      | s > x     = Nothing
      | s == x    = Just r
      | otherwise = isqrt' x (s + 2*r + 1, r+1)

Now that Nothing  is a valid result, our function handles all cases. Here are a few
examples of isqrt  values:

isqrt 4  = Just 2
isqrt 49 = Just 7
isqrt 3  = Nothing

What  if  we  would  like  to  calculate  the  fourth  root?  We  now have  a  square  root
function, so wouldn't it be nice to write the fourth root function in terms of square
roots? And we would like to retain the feature of returning Nothing , if there is no
result. How could we write that function? I'm very confident you will quickly come up
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with something like this:

i4throot :: Integer -> Maybe Integer
i4throot x = case isqrt x of
               Nothing -> Nothing
               Just y  -> isqrt y

Try to understand this code as well as possible. It first takes the square root of its
argument. If there is no square root, then naturally there is no fourth root. If there is,
then it takes the square root of the square root, which may fail again. So this is a
Maybe  computation, which has been built from two Maybe  computations.

Do you grasp the similarity with other wrapper types like lists? You could implement
the same using lists:

isqrt :: Integer -> [Integer]
isqrt = ...

i4throot :: Integer -> [Integer]
i4throot x = case isqrt x of
               []  -> []
               [x] -> isqrt x

Of course, the list  type allows multiple results,  too, so you could even return both
square roots of the number in isqrt . You would need to rewrite i4throot  to take
that into account, though, as it currently supports only a single square root.

The general idea is: You have some computation with a certain type of result and a
certain  structure  in  its  result  (like  allowing  no  result,  or  allowing  arbitrarily  many
results),  and  you  want  to  pass  that  computation's  result  to  another  computation.
Wouldn't  it  be  great  to  have  a  nice  generic  syntax  for  this  idea  of  combining
computations,  which  are  built  from  smaller  computations,  and  which  use  such  a
wrapper type like Maybe  or lists? It would be even better to abstract away certain
structural properties of the result, so the fact that lists allow multiple values would be
taken into account implicitly. We're approaching monads.

4. Monads
You have learned the basic idea of monads at the end of the last section. A monad is a
wrapper type around another type (the inner type), which adds a certain structure to the
inner type and allows you to combine computations of the inner type in a certain way.
This is really the full story.

To achieve that, a monad makes values of the inner type indirect. For example, the
Maybe  type is a monad. It adds a structure to its inner type by allowing lack of a
value, and instead of having a value 3 directly, you have a computation, which results
in 3, namely the computation Just 3 . Further, you have a computation, which doesn't
have a result at all, namely the computation Nothing .

Now you may want to use a computation's result to create another computation. This is
one of the important features of monads. It allows you to create complex computations
from simpler parts intrinsically, i.e. without requiring a notion of running computations.

Side note: To emphasize on how monads are nothing special or magic, I will refrain
from using Haskell's  nice syntactic  sugar  for  now and implement  and use them in
plain.

Technically, if you find that your type is a monad, you can make it an instance of the
Monad  type class. The following is the important part of that class (there are two more
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functions, but we don't need them now):

class Monad m where
  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b

The return  function, as its type suggests, takes a value of the inner type and gives a
computation, which results in that value. The (>>=)  function (usually used in the infix
>>=  notation) is more interesting: c >>= f  is a computation, which takes the result
of c  and feeds it to f . You can view it as a method to incorporate an intermediate
result (the result of c ) into a larger computation (the result of f ). How this looks like,
will become clear shortly. I will call c  the source computation and f  the consuming
function from now on.

The (>>=)  function is usually called the binding operator or bind function, because it
binds the result of a computation to a larger computation. The function f  (being the
second argument to (>>=)  is what I will call a monadic function in the rest of this
tutorial. It is a function, which results in a computation.

The power of the (>>=)  comes from the fact that it leaves unspecified, in what way
the result of the source computation is passed to the consuming function. In the Maybe
monad, there may be no result at all, so the consuming function may never be actually
called.

The Maybe monad
It's much easier to get started with an example. Imagine for a moment that Maybe
doesn't exist. So let's define it:

data Maybe a = Just a | Nothing   deriving (Eq, Show)

You will quickly find that the Maybe  type is a wrapper type around an inner type,
which adds a certain structure to the inner type. The return  function for Maybe  is
easy to implement: In the Maybe  monad, Just x  is a computation, which results in
x .

More  interestingly,  say,  you  need  the  result  of  a  Maybe  computation  (the  source
computation) in another computation, so you want to bind it to a variable x , then if the
source computation has a result, then x  becomes that result. If there is no result, then
(because of the lack of a value for x ), the entire computation has no result. This idea
is implemented through the binding function (>>=) :

instance Monad Maybe where
  return x = Just x

  Nothing >>= f = Nothing
  Just x  >>= f = f x

Passing the result  of  the computation Nothing  to  a  consuming function f  means
resulting in Nothing  right away (since there is no result), without running f  at all.
Passing the result of Just x  to a consuming computation f  means passing x  to f
and resulting in f 's result.

Now let's revisit our exact integer fourth root function i4throot .  It calculates the
exact integer square root of its argument, and if there is any result, it calculates the
exact integer square root of that result. Does this sound familiar? It should, because we
can now exploit the monadic properties of Maybe  (and you should definitely try this
out):

i4throot :: Integer -> Maybe Integer
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i4throot x = isqrt x >>= isqrt

The list monad
Similar to the Maybe  type, you will find that the list type is a wrapper type around an
inner type, which adds a list structure to that inner type, so it allows arbitrarily many
results. What about binding a computation's result to a monadic function?

To answer that,  just ask yourself: What is a list in the first place? It represents an
arbitrary  number  of  values,  so  it  represents  non-determinism.  In  other  words:  The
computation [2,3,7]  is one, which results in 2, 3 and 7.

Now imagine you need the result of a list computation in another computation, so you
want  to  bind  that  result  to  the  variable  x .  If  there  is  no  result,  then  the  entire
computation has no result (as there is no value for x ), the same idea as in Maybe . If
there is one result, x  becomes that one result. What about two results? If there are
multiple  values  for  x ,  then  there  will  be  multiple  incarnations  of  the  consuming
computation, one for each of the result values. The resulting computation collects all
the individual results into one larger result.

[10,20,40] >>= \x -> [x+1, x+2]

This computation results in [11,12,21,22,41,42] , because you bind the result of
[10,20,40]  to x . But there are three results, so there will be three incarnations of
[x+1, x+2] , one with x == 10 , one with x == 20  and one with x == 40 . The
result of each of the incarnations is merged together into one large end result.

Again, return  is easy to implement: In the list monad, [x]  is a computation, which
results in x . Have a look at the monad instance for the list type below:

instance Monad [] where
  return x = [x]
  xs >>= f = concat . map f $ xs

Again,  the  (>>=)  function  is  the  interesting  one:  As  its  first  step,  it  maps  the
consuming function f  over all values of the source list, thereby running each of the
results of xs  through f . Since each time f  results in a list in its own right, the result
of this mapping is a list of lists. As its second step, it takes this result list of lists and
forms one larger result list by concatenating the individual lists. The following code
illustrates this again:

multiples :: Num a => a -> [a]
multiples x = [x, 2*x, 3*x]

testMultiples :: Num a => [a]
testMultiples = [2,7,23] >>= multiples

The result of testMultiples  is [2,4,6,7,14,21,23,46,69] ,  because it takes
each  value  of  the  source  list,  feeds  it  into  the  consuming  function  multiples ,
resulting  in  three  result  lists  [2,4,6] ,  [7,14,21]  and  [23,46,69] .  In  other
words: It maps the multiples  function over the source list. Finally it concatenates
the result lists to form a single list containing all results.

The identity monad
The identity monad is of little use in practice, but I'm giving it here as a basis for
documenting State  and the IO  monad later, and of course for the sake of monad
theory and completeness. Also you may find uses for the identity monad in monad
transformers, about which I will talk later.
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A computation in the identity monad simply gives a value, so it doesn't add any special
structure like Maybe  or the list monad do. Binding an identity computation's result to a
consuming function simply means passing that single result verbatim.

data Identity a = Identity a

instance Monad Identity where
  return = Identity
  Identity x >>= f = f x

The computation Identity 5  is a computation, which results in 5, so it's natural that
return x  simply gives Identity x ,  as return x  should give a computation,
which results in x . Also passing the result x  of the computation Identity x  to a
consuming function f  means simply giving that result verbatim to f .

5. Properties of monads

The monad laws
First of all, for something to really be a monad, it has to adhere to three laws. Besides
that these are really needed by category theory, they also make sense:

return x >>= f == f x1.
c >>= return == c2.
c >>= (\x -> f x >>= g) == (c >>= f) >>= g3.

The first law requires return  to be a left identity with respect to binding. This simply
means that turning x  into a computation, which results in x  and then binding that
computation's result to a consuming function f , is the same as passing x  to f  directly.
Sounds obvious, doesn't it?

The second law requires return  to be a right identity with respect to binding. That
means  that  binding the  result  x  of  a  source  computation  to  the  return  function
(which is  supposed to give a computation,  which results  in x )  is  the same as the
original source computation (as that one results in x ). That should be just as obvious
as the first law.

The  third  law  requires  binding  to  be  associative.  To  understand  it,  consider  a
computation, which results in the 30th root of an integer or Nothing , if there isn't
any. You can build it up by taking the square root, then the cube root and finally the
fifth root of that number:

i30throot :: Integer -> Maybe Integer
i30throot x = isqrt x >>= icbrt >>= i5throot

You can take the computation of the sixth root (isqrt x >>= icbrot)  and feed its
result to i5throot  to calculate the fifth root of it, or you can take the computation of
the square root isqrt x  and feed its result to (\y -> icbrt y >>= i5throot)
to calculate the 15th root of it. The result is the same. This is required by the third
monad law.

Support functions
As said earlier, the Monad  class given above is not complete. There are two more
functions, (>>)  and fail :

class Monad m where
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  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b
  (>>)   :: m a -> m b -> m b
  fail   :: String -> m a

The (>>)  function is very convenient, if the result of a computation is meaningless or
not needed. You don't need to provide it in your instance definition, as it can be easily
derived from (>>=) , and this is the default definition:

a >> b = a >>= const b

Suppose a  and b  are computations, and you want a computation, which runs both a
and  b  and  results  in  the  result  of  b ,  ignoring  the  result  of  a .  With  the  binding
function, you would write something like a >>= \_ -> b  or a >>= const b .
With the convenience function (>>)  you can simply write  a >> b .  Later  in the
section about implicit state, this will become useful.

This function is usually used with computations, which result in a value of type () ,
the unit type, which is used, when there is no meaningful result. Other than ⊥ there is
only one value of type () , namely () . The unit type is analogous to the void  type
in C, although C's void  type does not have any values, while ()  does.

fail  is  a  function,  which  takes  an  error  string  and  gives  a  computation,  which
represents failure, possibly including the given error string. The default definition gives
a ⊥ computation, so calling this function aborts the program. Ignore this function for
now. We will see later, where it's useful.

Interpreting monadic functions and computations
A monadic computation, which you can get using monadic functions like return  or
our isqrt  function, or by using constructors of monads like Just , has a different
nature than a regular value. I have stated earlier that it  is correct to view monadic
values as computations instead of values. This has the following background.

Consider Maybe .  A monadic value Just 3  is not the value 3 right away. It  is a
computation which results in 3. This may seem unnatural at first, since the result is
already there, but try to interpret what the binding function (>>=)  does. It takes a
source  computation  and  a  consuming  monadic  function  and  binds  the  source
computations result to the argument of the consuming function. What binding means is
left to the monad. This gives an intrinsic idea of using the result of a computation in
another computation, without requiring a notion of running computations.

Importantly, as long as you don't request the result, there is no result, there is just a
computation.  How do  we  request  results?  The  most  obvious  method  is  to  request
results  inside  the  corresponding  monad,  for  example  by  binding.  But  as  you  just
learned, binding does not yield a result. It yields a computation. Extracting a result and
using it is part of that computation, but what about requesting a real end result, which
is not itself a computation? In other words, what about running a computation?

Trapped in a monad
You have seen that monads are containers, which denote computations. You can create
computations to result in a certain value, and you can bind the result of computations
to monadic functions. But we also want results. We would like to extract the 3 from
Just 3 . So far, we have only seen monads with known constructors, like Maybe  and
lists,  so  you  can  use  pattern  matching  or  even  equality  to  extract  values  from  a
monadic value.

Even if the constructors (Just , Nothing , []  and (:) ) were unknown, you have
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support functions to request results from a computation, which look different depending
on the monad.  For  example,  for  the  list  monad,  you have functions  like  head  or
last . For Maybe  you have fromJust  or fromMaybe .

But what if  you don't  know the constructors and there are no support  functions to
extract a value out of a computation? Then it is indeed not possible to do so! This is
important,  because  it  allows  us  to  do  some  interesting  things  with  monads.  This
property is the basis for interacting with the outside world without passing world state
around. It is the basis for the IO  monad, which I will talk about soon.

6. Implicit state
I have talked a lot about state in the second section. State is so integral to most other
programming  languages,  that  you  likely  have  never  bothered  realizing  that  it  even
exists, since the usual imperative model of programming views the whole program as
one giant state, which is continuously modified. This is certainly not surprising, since
most  languages  have  been  modeled  to  reflect  the  Turing  machine  model  of
computation. Haskell is (and must be) different.

What is state in the first place? It is a modifyable environment your program or part of
your program has access to throughout its life. For this to fit into the purely functional
model and to retain referential transparency, state needs to be explicit, for example as a
function argument. See the random  function in the first section again to see, how this
works:

random :: RandomState -> (Int, RandomState)

While  in  non-pure languages,  a  function returning a  random number  can get  away
without passing state around, for example by using global variables, this is not the case
in  Haskell.  Of  course,  this  is  a  monads  tutorial,  so  I  would  not  mention  state,  if
monads could not help here. ;)

Indeed, monads do help. In fact, they are truely a virtue for everything that has to do
with state. Say hello to State  monads:

data State s a

I'm  not  showing  you  State 's  complete  definition  yet,  because  the  details  can  be
confusing at first. For now, let's limit us to how State  is used. Remember that you
need to import Control.Monad.State  to use it.

State  is a type parameterized over two variables s  and a . For some state type s ,
the type State s  is a monad. A computation of type State s a  is a computation
depending on a state value of type s  and has a result  of  type a .  Throughout the
computation, state changes can be applied in a purely functional way.

Looking at how the return  and (>>=)  functions for state monads are defined, they
appear to be equivalent to the identity monad. They don't add any special structure to
the  inner  type,  so  a  computation  in  the  state  monad  gives  exactly  one  result.
return  x  gives  a  computation,  which  results  in  x ,  and  c  >>=  f  gives  a
computation, which passes the one single result of c  to f .

You  can  run  a  stateful  computation  using  the  support  functions  runState ,
evalState  and execState :

runState  :: State s a -> s -> (a, s)
evalState :: State s a -> s -> a
execState :: State s a -> s -> s
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All of them take a stateful computation and an initial state as their arguments and give
(part  of)  the  result  of  that  computation.  Although  they  seem  to  break  referential
transparency on a first glance, they don't, because you feed into them all information
needed  to  produce  the  result,  and  indeed,  the  result  is  always  the  same,  if  the
arguments are the same. runState  is the basis of the other two. It produces both the
result value and the end state as a tuple.

Of course, a state monad would be useless, if you couldn't actually use the state in
computations, because you would have just another identity monad. So there are two
monadic  support  functions  get  and  put  to  retrieve  and  change  the  current  state
respectively. They make the subtle difference between state monads and the identity
monad:

get :: State s s
put :: s -> State s ()

The get  computation has a result, which is the current state (that's why the result type
is  the  same as  the  state  type),  and the put  function takes  a  new state  value and
replaces the current state with it. Let's try this out:

runState (put 3) 4 = ((), 3)

This example should be obvious. The computation put 3  simply replaces the current
state (which is the initial state passed to runState  in this case) with the value 3 and
returns  the  result  value  () .  Since  this  computation  ignores  its  initial  state  (given
through the runState  function), the result is always ((), 3) , independent of the
initial state.

runState (get >>= \s -> return (2*s)) 10
  = (20, 10)

This example is more interesting. It makes use of the initial state 10 given to it in that
it returns it doubled as its result. The state itself is not changed, so the result value is
20, while the end state is 10.

runState (get >>= \s -> put (s+1)) 10
  = ((), 11)

The computation given here first takes the current state (which is the initial state in this
case), binds it to s  and puts back s+1 . The result of that computation is () , but the
end state is the initial state plus one.

runState (get >>= \s -> put (s+1) >> return (s^2)) 3
  = (9, 4)

Finally an example, where both the result value and the state value are significant. The
state computation takes the current (in this case initial) state, binds it to s , then puts
s+1  back as the new state and finally returns s^2  as the result.

Of course, such stateful computations can be further combined, so the current state
doesn't have to be the initial state. Let's see how this works by writing a simple state-
backed pseudo-random number generator:

import Data.Word

type LCGState = Word32

lcg :: LCGState -> (Integer, LCGState)
lcg s0 = (output, s1)
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  where s1 = 1103515245 * s0 + 12345
        output = fromIntegral s1 * 2^16 `div` 2^32

This  function  implements  a  pseudo-random  number  generator  called  a  linear
congruential generator, which advances its current state s0 to s1 with the following
formula: s1 = (1103515245 * s0 + 12345) mod 2^32, and then outputs the highest 16
bits of s1 as a random number.

Using a State  monad, we can make this passing of the LCGState  value implicit.
We write a computation getRandom  that takes the current state value, passes it to
lcg , then updates the state and returns a random number.

getRandom :: State LCGState Integer
getRandom = get >>= \s0 -> let (x,s1) = lcg s0
                           in put s1 >> return x

You can  now use  the  getRandom  computation  to  build  larger  computations.  It  is
important that you interpret functions like get  and getRandom  as computations. The
result  of  them are  not  values,  but  computations.  You can  bind  the  result  of  those
computations to other computations using the (>>=)  function. This property preserves
referential  transparency,  because  you're  not  dealing  with  results,  but  with  the
computations to get them. You can combine these computations as you like:

addThreeRandoms :: State LCGState Integer
addThreeRandoms = getRandom >>= \a ->
                  getRandom >>= \b ->
                  getRandom >>= \c -> return (a+b+c)

Replacing the getRandom  call with its result results in the same program, because the
result is not a value, but a computation. Try runState addThreeRandoms x  with
different values for x .

Now  what  is  the  great  advantage  here?  Look  closer  at  the  addThreeRandoms
function. Do you find it? The state of the generator is not mentioned anywhere. It is
implicit.  No explicit  passing,  not  even to  getRandom .  Every  computation  of  type
State  s  a  has  implicit  state  of  type  s ,  and  this  state  is  carried  along  the
computation through binding.

And you have seen, functions like put  modify the state without giving any meaningful
result. You could use this, for example, to implement a convenience function modify
to modify the state (and in fact, this function is even predefined for you):

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

7. The IO monad
Now look at State  again, and then think back to the second section "Motivation"
above. Do you remember the hypothetical Universe  type, which we passed explicitly
there? Couldn't we use a State  monad to turn the state of our universe implicit? Yes,
if this type existed, we could:

type IO = State Universe

This would already solve our problem, wouldn't it? Not yet, because there is a catch:
Where does the initial  state of the universe come from? The solution is  to have a
monadic main  computation, which is the entry point of our Haskell program. Running
the  program  means  running  the  main  computation  with  the  current  state  of  the
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universe as its initial state:

main :: IO ()

In other words, the whole program is simply one IO  computation called main , which
may be built  from smaller computations, and which, given the implicit  state of the
universe, can query and change this state. Now, just like the put  function, it makes
sense  to  have  a  putStrLn  function,  which  is  a  computation  altering  part  of  this
implicit state:

putStrLn :: String -> IO ()

Although, if there was really a Universe  type, it would make sense to have a bunch
of Universe -manipulating functions and then use a State  monad to turn it  into
implicit state, there is a problem with this approach, namely threading. In the second
section, we have seen that threading the state of the universe is pointless by concept.
We cannot go back in time, and threading universe state is doing just that.

To make threading of the universe state impossible, it must be impossible to reference
that state, because as long as we can give the state of the universe a name, we can use
this name to refer to it arbitrarily often. To illustrate this problem, suppose there is a
Universe -function writeLog , which writes a log entry:

writeLog :: Universe -> String -> Universe

strangeWriteLog :: String -> IO ()
strangeWriteLog msg = get >>= \world0 ->
                      put (writeLog world0 msg) >>
                      put (writeLog world0 "")

This is basically the same problem as in the second section. As long as we can refer to
the state of the universe in some way, we can thread it. The code above takes the state
of the universe using get , writes the log entry and puts the modified universe state
back. After that, it uses a version of the universe, where the log entry has not been
written yet, and writes an empty line to that. Finally it puts the modified version of the
latter universe back. This code goes back in time.

Again, there seems to be a simple solution to this problem. We simply disallow using
get  and put  with IO , and we disallow using writeLog  directly. We provide a safe
wrapper version instead:

writeLogSafe :: String -> IO ()

Now  we  have  seen  that,  in  the  context  of  IO  (=  State Universe ),  we  must
artifically disallow using get  and put .  Further, we don't need runState  for that
monad, because the initial state comes implicitly with running the program (i.e. running
the main  computation). This takes us to the conclusion that IO  gets along without a
Universe  type at all. If there is no state value to refer to, we don't need a type for it.
Hence, we don't need the State  type either. Instead, we define IO  independently as a
completely opaque type:

data IO a

This is just another state monad, but it is not written in terms of State , and there is
no type for the state of the universe. There is also no state value, so there is no get  or
put , which may query or change it. Since there is no value to refer to, it's impossible
to thread the state of the universe.

Taking this further, there is also no unsafe writeLog  like the one above anymore, for
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which we would need to write a safe wrapper first, but instead writeLog  is already a
safe monadic function:

writeLog :: String -> IO ()

This function takes a string and results in a computation, which takes the state of the
universe  and  adds  a  log  entry  to  it.  With  this  approach,  the  threading  problem is
solved. So we have abstracted away all problems with impure operations in our purely
functional language. For us, there is no way to run an IO  computation other than by
running main , and that can only be done through executing the program. We can only
combine IO  computations in terms of binding, and the only way to change the state of
the  universe  is  to  use  opaque  state-changing  functions  like  the  (hypothetical)
writeLog  function. We are trapped in the IO  monad, and this is how input/output in
Haskell is consistent with referential transparency.

Properties of IO
You may find that State  monads as well as IO  look very similar to the identity
monad. The idea of what a value is, is left simply as exactly one value, just like in the
identity monad. Also, binding the result value of a computation means simply passing
this one value, again just like in the identity monad. However, you can interpret both
State  monads and IO  as implicitly and invisibly passing the current state besides the
value.

IO  is also special in that it enforces sequencing. While usually in a Haskell program,
the order of evaluation is undefined, it is not so for combining IO  computations. The
(>>=)  function always evaluates its first argument before evaluating its second. This
makes input/output code much more predictable.

Further, IO  is one of the few monads without a real internal representation. There is
no state value at all. Think of the state value being really the state of the universe.
Obviously we cannot turn the real state of the universe into some discrete value in
memory, and there is also no reason to do so. The IO  monad is rather a theoretical
concept to make impure operations consistent with referential transparency, and to think
of the state of the universe being really implicit state, just like in a State  monad.

Predefined computations
As suggested above, computations changing the state of the universe must be opaque.
So for a program to be useful, it must have access to a number of predefined functions
for  performing  basic  operations  like  accessing  files,  interacting  with  the  user,
networking,  etc.  I'm listing only the most  basic  operations,  so you can get  started.
Refer to the System.IO  module for more I/O functions.

putStr   :: String -> IO ()
putStrLn :: String -> IO ()
print    :: Show a => a -> IO ()

These three functions can be used to print a string or some arbitrary showable value to
the standard output (stdout ). print  is mainly useful for debugging purposes. Both
putStr  and putStrLn  write a string verbatim to stdout , the latter appends a line
feed.

getChar :: IO Char
getLine :: IO String

These two computations read from standard input (stdin ) one character or one line,
respectively. Using these, you can already write a program, which echoes the user's
input:
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main :: IO ()
main = getLine >>= \line ->
       putStrLn line >>
       main

With a little extension, this program quits upon entering "quit":

main :: IO ()
main = getLine >>= \line ->
       if line /= "quit"
         then putStrLn line >> main
         else return ()

8. Syntactic sugar

The do-notation
The (>>=)  function is associative. Its first (left) argument is a computation, of which
the result is bound to the argument of the consuming function given by the second
(right) argument. That function results in a computation, so the following is a very
frequent and familiar pattern:

comp >>= \x -> ...

Having to write whole programs with this combinator style and lambda expressions can
become quite painful and annoying. That's why Haskell supports a very beautiful and
intuitive notation called the do-notation. The above can be written as:

do x <- comp
   ...

Since the (>>=)  function is associative (as required by the third monad law), if we
want to bind the results of two computations comp1  and comp2 , we usually leave the
parenthesis away and just write:

comp1 >>= \x -> comp2 >>= \y -> ...

This  gets  increasingly ugly,  but  the associativity  of  (>>=)  allows us to  align this
vertically instead, since we don't need to care about parenthesis:

do x <- comp1
   y <- comp2
   ...

Of course, more sugar exists for the convenience function (>>) . Instead of writing
a >> b , you can simply align a  and b  vertically in do-notation. So you would write

c >>= \x -> f x >> g (x+1)

simply as:

do x <- c
   f x
   g (x+1)

Let's write the last IO  example above using this notation:
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main :: IO ()
main = do
  line <- getLine
  if line /= "quit"
    then putStrLn line >> main
    else return ()

This example should be self-explaining. Instead of using the (>>=)  function, we have
bound the result of getLine  to a name. For another example, let's reimplement the
i4throot  function from the third section:

i4throot :: Integer -> Maybe Integer
i4throot x = do
  squareRoot <- isqrt x
  isqrt squareRoot

Please consider that the above code is an example of overusing the do-notation. The
original  code  from  the  third  section  is  much  clearer.  However,  more  interesting
examples are the reimplementations of getRandom  and addThreeRandoms  from the
section about implicit state:

getRandom :: State LCGState Integer
getRandom = do
  s0 <- get
  let (x,s1) = lcg s0
  put s1
  return x

addThreeRandoms :: State LCGState Integer
addThreeRandoms = do
  a <- getRandom
  b <- getRandom
  c <- getRandom
  return (a+b+c)

The getRandom  function binds the current  state to the name s .  The let  syntax
without the in  keyword is specific to the do-notation, in that it's in effect for the rest
of the do  block. Finally, two consequtive monadic computations (in this case put s1
and return x ) are combined using (>>) .  This gives a notation, that looks quite
semi-imperative. However, apart from looking imperative in some cases, this notation
has little to do with imperative programming, so the keyword do  may be misleading.

To make this clearer, we will have a closer look at the list monad now. As you have
seen, the list monad embodies non-determinism, so binding to list computations means
passing each value of the source list to a non-deterministic function. The individual
results are then merged together to give the result list. Using do-notation it becomes
obvious what this means:

do x <- [1,2,3]
   y <- [7,8,9]
   return (x + y)

The first  line binds the list  computation [1,2,3]  to  the name x .  There is  really
nothing wrong with the interpretation that x  represents all three values at the same
time.  It  is  a  compact  name  for  a  non-deterministic  value.  Also  y  is  bound  to
[7,8,9] , so it represents the values 7, 8 and 9 at the same time. So x + y  is a
non-deterministic  value representing nine values  altogether.  The result  of  the  above
code will be:
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[8,9,10,9,10,11,10,11,12]

What is important here is that the order or even strictness of evaluation of the above
code is completely undefined. The compiler may choose to evaluate the x  values first
or the y  values first or both in parallel. Although the code appears to be imperative,
it's by far not.

Pattern matching in do-notation
A very useful feature of bindings in the do-notation is the fact that they can do pattern
matching,  just  like  the  non-sugared  lambda  syntax  can.  Instead  of  writing
c >>= \(x,y) -> ... , you can write:

do (x,y) <- c
   ...

So to do pattern matching, there is no reason to use case ... of . However, there is
a little difference. The usual lambda-based pattern matching throws an exception, if
pattern matching fails. The pattern matching in do-notation is more general: If pattern
matching fails, instead of throwing an exception, the entire computation in the do-block
results in fail str , where str  is some implementation-dependent error string like
"Pattern matching failed".  The error  string may include source code file name and
line/column numbers.

testMaybe :: Maybe (Integer, Integer)
testMaybe = do
  [x] <- return []
  return (x-1, x+1)

This code fails at pattern matching in the binding. When that happens, then the part of
the do-block following the binding isn't evaluated, but the entire computation results in
fail  "Pattern  matching  failed." .  As  noted,  the  error  string  is
implementation-dependent.

In the Monad  instance of Maybe , the fail  function is implemented as:

instance Monad Maybe where
  ...
  fail = const Nothing

That means, if, in the Maybe  monad, pattern matching in a do-block fails, then the
entire computation is Nothing , notably not throwing an exception like case  would.
Similarly, in the list monad, if pattern matching in a do-block fails,  then the entire
computation is [] :

instance Monad [] where
  ...
  fail = const []

But  this  shouldn't  mislead  you  to  the  conclusion  that  a  failing  pattern  match  in  a
do-block must lead to an []  end result. This is indeed not the case:

testList :: [Integer]
testList = do
  Just x <- [Just 10, Nothing, Just 20]
  [x-1, x+1]

This code fails at pattern matching in the binding, but only in a single incarnation of
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the  consuming  computation  [x-1,  x+1] ,  namely  the  one,  where  the  result  is
Nothing  and hence fails to pattern-match against Just x . This incarnation has no
result, but the other two have results. The first incarnation (the one, where Just x
matches Just 10 ) has the results 9 and 11, the second incarnation is the computation
[] ,  because  pattern  matching  results  in  calling  fail ,  and  the  third  and  final
incarnation  has  the  results  19  and  21.  So  the  end  result  of  this  computation  is
[9,11,19,21] , although a pattern match failed somewhere inside of the computation.

Note: This special pattern match rule is only effective for bindings (the <-  syntax) in a
do-block. It is not effective for pattern match failures caused by case  or let , even if
they are parts of a do-block.

List comprehensions
List  comprehensions  are  a  very  convenient  shortcut  to  do-notation  for  lists.  A list
comprehension is a description of a list, which consists of two parts separated by a
vertical  bar  ("|",  the  pipe  symbol),  which  is  written  in  brackets,  like
[ exp | desc ] .  The  right  part  desc  contains  bindings,  lets  and  guards
separated by commas. The left part exp  is an expression using the binds and lets
from the right part. Here is an example:

[ x^2 + y^2 | x <- [1..3], y <- [4..6], x+y /= 7 ]

The right part contains two bindings, binding the list [1..3]  to x  and [4..6]  to y .
The expression x+y /= 7  is called a guard. Combinations of x  and y , for which the
guard evaluates to False  will be filtered out. The expression x^2 + y^2  on the left
side of the vertical bar describes the value to be included in the list. This example is
evaluated to:

[17,26,20,40,34,45]

Besides bindings, you can also use let  expressions on the right side of the vertical
bar:

[ x + sx | x <- [1..10], let sx = sqrt x, sx > 2 ]

To save us from having to repeat sqrt x , and thus to avoid common subexpressions,
we used a let  expression.

9. Too much sugar
As too much sugar isn't good for our body, it's also not too good for the body of your
source code. Here is a collection of common exaggerations with syntactic sugar, which
you should avoid,  together  with  reasons  why  it's  better  to  avoid them.  After  all,  I
decided to relay the introduction of the sugar to a late section in this tutorial for some
good reason. The reason is to pull you away from imperative thinking.

Superfluous do

main :: IO ()
main = do putStrLn "Hello world!"

The do keyword is superfluous in this code. It's correct as do c  is translated to simply
c , if c  is a computation. However, it gives the impression of having a special and
isolated imperative syntax for input/output code, especially to beginners reading that
code. But monads are nothing special or magic, so better write:
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main :: IO ()
main = putStrLn "Hello world!"

Superfluous names

do line <- getLine
   putStrLn line

This introduces a name, where a name doesn't really add convenience. It requires you
to read more code to understand the obvious meaning of what it's  supposed to do,
namely this:

getLine >>= putStrLn

Think of Unix pipes. Instead of redirecting the output of ls -l  to a file and open that
file  for  paged  viewing  with  less ,  you  would  rather  pipe  it  directly  using
ls -l | less , wouldn't you?

A particularly ugly case of the above is the following code, which is highly influenced
by imperative languages, where return  is a control construct and strictly necessary:

do x <- someComp
   return x

The above code is an extraordinarily verbose, intensely sugared variant of nothing else
than someComp >>= return . Do you remember the second monad law? The code is
equivalent to simply someComp , which doesn't require any sugar. So you can safely
replace the above code by simply someComp , which is only a single unsugared word.
No superfluous names and no unnecessary binding.

Incomprehensible list comprehensions

[ x+1 | x <- xs ]

Again, a piece of code, which is highly influenced by imperative programming, where
you manipulate values by referring to them in formulas. Think functionally! Instead of
manipulating values by a single, monolithic formula, use higher order functions:

map (+1) xs

The reason is simple. You can combine these functions arbitrarily without making your
code any harder to understand. Consider the following example, which is supposed to
apply f  to all values of the list of lists matrix , which are not 1, and finally add them
together:

sum [ f x | vector <- matrix, x <- vector, x /= 1 ]

Again, using higher order functions and function composition, the code should be much
clearer:

sum . map f . filter (/= 1) . concat $ matrix

10. Backtracking monads
Sometimes the general Monad  class is too general. Often you would like to generalize
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features  of  particular  monads like failability  or  backtracking.  In  this  section,  I  will
introduce a  special  monad class,  which generalizes  the  feature  of  backtracking,  i.e.
keeping track of many results.

We have seen that the code for i4throot  is the same for both the list monad and the
Maybe  monad. Wouldn't it be great to do the same for the isqrt  function? Instead of
a particular monad, we would like to generalize it to the following type:

isqrt :: Monad m => Integer -> m Integer

Unfortunately this is impossible. Consider our little isqrt  implementation from above
again:

isqrt :: Integer -> Maybe Integer
isqrt x = isqrt' x (0,0)
  where
    isqrt' x (s,r)
      | s > x     = Nothing
      | s == x    = Just r
      | otherwise = isqrt' x (s + 2*r + 1, r+1)

To  generalize  the  result  of  this  function  from  Maybe  Integer  to
Monad m => m Integer , firstly we need to get rid of the Just r . This is easy.
Just replace it by return r . But what about Nothing? What is the general idea of
no result? You will find that the Monad  class by itself supports no means to express a
computation, which does not have a result. You have seen monad-specific possibilities
like  Nothing  in  the  Maybe  monad  or  []  in  the  list  monad,  but  there  is  no
generalization for this. There is also no generalization for many results.

The reason is simple. Not all monads support the notion of a computation, which has
no or many results,  so we need to introduce a special  class for these backtracking
monads. We call it MonadPlus :

class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a

This class gives us a generalized computation mzero , which has no result, and a way
to combine the results of two computations, the mplus  operator: Here is the instance
for the Maybe  monad:

instance MonadPlus Maybe where
  mzero = Nothing

  Nothing `mplus` y = y
  x       `mplus` y = x

The MonadPlus  instance for Maybe  allows us to combine two computations into one,
which returns the result of the first non-Nothing  computation:

Just 3  `mplus` Just 4  = Just 3
Nothing `mplus` Just 4  = Just 4
Nothing `mplus` Nothing = Nothing

The following is the instance for the list monad:

instance MonadPlus [] where
  mzero = []
  mplus = (++)
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The MonadPlus  instance for the list monad allows us to combine two computations
into one, which returns all results of both computations. It concatenates the results of
both computations. This allows us to generalize the isqrt  function, and hence also
the i4throot  function from Maybe  or the list monad to any backtracking monad (i.e.
any MonadPlus ):

isqrt :: MonadPlus m => Integer -> m Integer
isqrt x = isqrt' x (0,0)
  where
    isqrt' x (s,r)
      | s > x     = mzero
      | s == x    = return r `mplus` return (-r)
      | otherwise = isqrt' x (s + 2*r + 1, r+1)

i4throot :: MonadPlus m => Integer -> m Integer
i4throot x = isqrt x >>= isqrt

This version gives zero or one result in the Maybe  monad and all results in the list
monad. As can be seen above, the isqrt  function now uses mplus  to combine two
computations, one of which returns the positive square root and the other one returns
the negative. The big advantage here is that you have a single piece of code for all
backtracking monads.

11. Library functions for monads
One of the greatest advantages of monads is generalization. Instead of implementing
two things independently, look for common ideas and implement a general concept.
Then make these two things special cases of the general concept. This allows you to
implement a few things at a more general level, which allows you to make a third
thing much more easily, if it is another special case of the concept, because you don't
need to reimplement all the goodies you wrote for the general concept.

Notable examples for the success of this idea are category theory and group theory.
Both define general concepts and corresponding proofs. If an object is found to fit into
these  concepts,  the  respective  proofs  apply  automatically.  That  saves  a  lot  of  hard
work, because you get those proofs for free.

This works for programming, too. But instead of generalizing proofs, we generalize
functionality. This is a very integral concept in Haskell, which is found in very few
other  languages.  Monads  are  the  most  important  example  of  this.  Remember  the
i4throot  function? As you have seen, the codes for both the Maybe  version and the
list version were the same, just the types were different. The magic lies in the (>>=) .
It represents the general concept of binding the result of a monadic computation to the
argument of a monadic function:

i4throot x = isqrt x >>= isqrt

A rich library of  support  functions can be found in  the Control.Monad  module.
They are general in that they work for every monad. Henk-Jan van Tuyl wrote A tour
of the Haskell Monad functions [4], a comprehensive tour of the various functions with
usage examples. I will document a subset of them here. Some of them are available in
the  Prelude  as  well,  but  generally  you'll  want  to  import  the  Control.Monad
module. If you implement a new monad, all these support functions become available
for free, because they have been implemented at a general level.

Important  note:  For  most  of  these  monadic  support  functions,  I'm  showing  you
examples from multiple monads, most notably the list monad. The results, which you
get in the list monad can be quite confusing at first. If you don't grasp them right away,
don't worry. For now, just read on and refer back later.
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mapM and forM: mapping a monadic function over a list

mapM  :: Monad m => (a -> m b) -> [a] -> m [b]
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

forM  :: Monad m => [a] -> (a -> m b) -> m [b]
forM_ :: Monad m => [a] -> (a -> m b) -> m ()

These functions are most useful in state monads. They allow you to apply a monadic
function to a list. forM  is the same as mapM  with the arguments flipped. If you don't
need the results,  or  if  the results  are meaningless,  you can use mapM_  or  forM_ ,
which are the same, but they ignore the result.

import System.Environment

main :: IO ()
main = getArgs >>= mapM_ putStrLn

The getArgs  computation returns a list of the command line arguments given to the
program. To print those arguments, each on its own line, the code above uses mapM_ .

The type of mapM  may give the impression that in the list monad, it is equivalent to
concatMap . However, it isn't. Have a look at what happens in the list monad:

mapM (\x -> [x-1, x+1]) [10,20,30]

It takes a list of values, applies the monadic function and gives a computation, which
results in the list of values with the function applied. This is the general idea.

Remember, we're in the list monad, which denotes non-determinism. The result of the
computation is [a,b,c] , where a  is the result of the computation [10-1, 10+1] ,
likewise b  is the result of [20-1, 20+1]  and c  is the result of [30-1, 30+1] .
There are two results for each of a , b  and c , so there are in fact eight results:

[ [9,19,29],  [9,19,31],  [9,21,29],  [9,21,31],
  [11,19,29], [11,19,31], [11,21,29], [11,21,31] ]

sequence: sequencing a list of computations

sequence  :: Monad m => [m a] -> m [a]
sequence_ :: Monad m => [m a] -> m ()

The sequence  function simply takes a list of computations and gives a computation,
which results in a list of each of the results of those computations in order:

sequence [c0, c1, ..., cn]
= do r0 <- c0
     r1 <- c1
     ...
     rn <- cn
     return [r0, r1, ..., rn]

Example:

import System.Environment

main :: IO ()
main = sequence [getProgName, getEnv "HOME", getLine]
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         >>= print

The above example uses sequence  to run three computations of type IO String .
The results are collected in the result list, which is bound to print . When running
that program, nothing will happen at first, because the last of the three computations
requests an input line from the user. After that, the resulting list of three strings is
printed. The code is equivalent to:

import System.Environment

main :: IO ()
main = do
  results <- do
    a <- getProgName
    b <- getEnv "HOME"
    c <- getLine
    return [a,b,c]

  print results

Although this function is easily comprehensible for identity-like monads like State s
or IO , it can give quite bizarre-looking results for monads, which add structure. Let's
see, what sequence  does in the list monad:

sequence [[1,2], [4,5], [6], [7,9]]

This gives the following result list:

[ [1,4,6,7], [1,4,6,9], [1,5,6,7], [1,5,6,9],
  [2,4,6,7], [2,4,6,9], [2,5,6,7], [2,5,6,9] ]

This may look strange at  first,  but  reconsidering the nature of  the list  monad,  this
should  make  perfect  sense  again.  Just  consider  that  sequence  takes  a  list  of
computations and gives a computation, which results in a list of the respective results.
There are four computations, namely [1,2] , [4,5] , [6]  and [7,9] .

If we name the results of those computations a , b , c  and d  respectively, then the
result  is  [a,b,c,d] .  a  represents  the  values  1  and  2,  as  it  is  the  result  of  the
computation [1,2] . b  represents two results as well, c  represents a single result and
d  represents two results again. So the result list [a,b,c,d]  represents eight results.
If you pay attention to the type of sequence , this makes sense, because the result is
returned in the list monad in this case, so there is not just a list, but a list of lists, i.e. a
non-deterministic list.

The code above is equivalent to the following:

do a <- [1,2]
   b <- [4,5]
   c <- [6]
   d <- [7,9]
   return [a,b,c,d]

forever: sequencing a computation infinitely

forever :: Monad m => m a -> m b

This function takes a computation c  and turns it into c >> c >> ... , so it gives a
computation,  which  runs  forever  (unless  there  is  an  implicit  stop  in  the  binding
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function). This function is almost only useful in state monads:

main :: IO ()
main = forever $ putStrLn "Hello!"

Although in almost all cases, the resulting computation really runs forever, there are a
few  cases,  where  forever  gives  a  finite  computation.  Notable  examples  are
forever []  and forever Nothing . The reason is simple:

forever Nothing = Nothing >> forever Nothing

You  should  know  from  the  definition  of  binding  for  Maybe ,  that  if  the  source
computation  has  no  result,  then  the  consuming  function  isn't  called  at  all,  so  this
computation gives Nothing  right away. The same holds for the list version.

replicateM: sequencing a computation finitely

replicateM  :: Monad m => Int -> m a -> m [a]
replicateM_ :: Monad m => Int -> m a -> m ()

These  two functions  are  special  cases  of  sequence .  They take  a  count  n  and  a
computation  c  and  produce  a  computation,  which  runs  c  exactly  n  times.
replicateM  returns the results, replicateM_  doesn't. The latter function is almost
only useful in state monads.

main :: IO ()
main = replicateM 3 getLine >>= mapM_ putStrLn

The above code reads three lines and then prints them in order.

This  function  also  makes  sense  in  the  list  monad.  Have  a  look  at  the  following
example:

replicateM 3 [0,1]

The result of this computation is [a,b,c] , where all of a , b  and c  are the result of
the same computation [0,1]  (because we replicate that computation three times). This
gives a total of eight results (key word: non-determinism):

[ [0,0,0], [0,0,1], [0,1,0], [0,1,1],
  [1,0,0], [1,0,1], [1,1,0], [1,1,1] ]

when and unless: conditional skipping of a computation

when   :: Monad m => Bool -> m () -> m ()
unless :: Monad m => Bool -> m () -> m ()

The  computation  when  True  c  is  the  same  as  c ,  whereas  the  computation
when False c  is the same as return () . The unless  function is the reverse.

import System.Exit

main :: IO ()
main =
  forever $ do
    line <- getLine
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    when (line == "quit") exitSuccess
    putStrLn line

The above code repeats the following computation forever: Read a line, if that line is
equal to "quit", then throw an exitSuccess  exception (which simply terminates the
program), then finally print the line.

liftM: applying a non-monadic function to the result

liftM :: Monad m => (a -> b) -> m a -> m b

The liftM  function can be used to turn a computation c  into a computation, for
which  a  certain  non-monadic  function  is  applied  to  the  result.  So  the  computation
liftM f c  is the same as c , but the function f  is applied to its result. One says, the
function f  is lifted or promoted to the monad.

main :: IO ()
main = do
  x <- liftM read getLine
  print (x+1)

In the above code, the computation liftM read getLine  is the same as getLine ,
besides that the read  function is  applied to its  result,  so you don't  have to apply
read  to x .

liftM (^2) [1,2,3]

For  lists  the  liftM  function  is  equivalent  to  map .  So  the  above  code  results  in
[1,4,9] . This should be obvious, as the list monad adds an 'arbitrarily many results'
structure to the result, hence lifting a function f  means applying it to each result.

liftM2 :: Monad m => (a1 -> a2 -> b) -> m a1 -> m a2 -> m b

Similarly to the liftM  function, the liftM2  function takes a binary function f  and
two  computations.  It  gives  a  computation,  which  results  in  the  result  of  the  two
individual computations passed to f . Likewise there are functions liftM3 , liftM4
and liftM5 .

12. Monad transformers
This final  section is  about  combining monads.  The motivation is  simple.  You have
implicit state, which you want to use while interacting with the outside world through
IO , or you have a stateful computation and want it to be non-deterministic (including
its state). You are seeking monad transformers.

A monad  transformer  for  (or  to)  a  particular  monad  is  usually  written  with  a  T
appended to its name. So the transformer version for State  is written StateT . The
difference between State s  and StateT s  is: The former is a monad right away,
while the latter needs a second monad as a parameter to become a monad:

data State  s a
data StateT s m a

Where m  is a monad, StateT s m  is also a monad. StateT s m  is a version of
State s , which returns a computation in the m  monad instead of a result. In other
words, it transforms a State  computation into an m  computation. Here is an example:
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incrReturn :: StateT Integer Maybe Integer
incrReturn = modify (+1) >> get

If  called with the state 3,  this code would increment the state to 4,  but instead of
resulting in 4, it results in Just 4 , so it gives a computation in the Maybe  monad
instead  of  a  direct  result.  You  cannot  use  the  usual  runState ,  evalState  or
execState  functions here. Instead there are variants of them specific to the StateT
transformer:

runStateT  :: Monad m => StateT s m a -> s -> m (a, s)
evalStateT :: Monad m => StateT s m a -> s -> m a
execStateT :: Monad m => StateT s m a -> s -> m s

However, on a first glance, there seems to be little difference between State s  and
StateT s m ,  other than that the latter returns its  result  in the m  monad. This
would be pretty useless. The real power of monad transformers comes with the lift
function, which allows you to encode a computation in the inner monad. Have a look
at this simple example:

incrAndPrint :: StateT Integer IO ()
incrAndPrint = do
  modify (+1)
  x <- get
  lift (print x)

As you see, the lift  function is used to encode an IO  computation just right in the
stateful computation, hence you have combined the monads State Integer  and IO .
This is a great feature, for example to carry application state around implicitly:

data AppConfig = ...

myApp :: StateT AppConfig IO ()
myApp = ...

main :: IO ()
main = do
  cfg <- getAppConfig
  evalStateT myApp cfg

The idea here is  that  you set  up the application state through the getAppConfig
computation, which may take into account command line arguments, configuration files
and environment variables. Then you run the actual application computation myApp
with  this  configuration  as  implicit  state.  You  could  go  further  giving  the
StateT AppConfig IO  monad a convenient synonym:

type AppIO = StateT AppConfig IO

myApp :: AppIO ()

This is just a State  transformer. Many monads can act as transformers and have a
corresponding types. For example there are the Reader  and Writer  monads, which I
don't discuss here. For them, there exist transformer variants ReaderT  and WriterT .
There is also the MaybeT  transformer variant of Maybe  (which can be found in the
MaybeT package [3]).  The list  monad has  a  transformer  variant,  too:  the  LogicT
transformer (found in the LogicT package [2]).

However, there is one notable exception: the IO  monad. Above in this tutorial you
have  learned  that  there  is  no  means  to  run  an  IO  computation,  but  transforming
monads needs just that. That means, even if there were an IO  transformer, let's call it
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[3] MaybeT package

[4] A tour of the Haskell Monad functions

[5] Abstraction, intuition, and the "monad tutorial fallacy"

IOT ,  you could only construct  computations in the IOT m  monad,  but  you could
never run them. So it makes no sense to have an IO  transformer.

As  a  side  note,  the  identity  monad  acts  as  an  identity  with  respect  to  monad
transformation. That means, if  MT  is  the transformer variant of the M  monad, then
MT Identity  is functionally equivalent to M . For example, StateT s Identity  is
functionally equivalent to State s , in that it adds no special properties to State s .
Some people even proposed that  we define all  monads in terms of their  respective
transformers and the identity monad.

A. Contact
You can contact me through email (es@ertes.de). If you prefer live chats, you can also
reach  me  in  the  #haskell  channel  on  irc.freenode.net.  My  nickname  there  is
mm_freak. If you are interested in more from me, visit my blog, but be prepared to find
informal stuff there, too. =)

B. Update history
Version 1.00 (2008-12-26): Initial revision.
Version  1.01  (2009-02-01):  Corrected  code  in  syntactic  sugar  section,  which
didn't compile. Thanks to Peter Hercek for reporting. Added a reference to A
tour  of  the  Haskell  Monad  functions  [4]  and  to  Brent  Yorgey's  Abstraction,
intuition, and the "monad tutorial fallacy" [5]. A few minor style modifications.
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