
Understanding Haskell Monads
Copyright © 2008 Ertugrul Söylemez

Version 1.01 (2009-02-01)

Haskell is a modern purely functional programming language, which is easy
to learn, has a beautiful syntax and is very productive. However, one of the
greatest barriers for learning it are monads. Although they are quite simple,
they can be very confusing for a beginner. As I have deep interest in
extending Haskell's deployment in the real world, I'm writing this
introduction for you.

1. Preamble
2. Motivation
3. An example
4. Monads
5. Properties of monads
6. Implicit state
7. The IO monad
8. Syntactic sugar
9. Too much sugar
10. Backtracking monads
11. Library functions for monads
12. Monad transformers
A. Contact
B. Update history
References

1. Preamble
I have written this tutorial for Haskell newcomers, who have some basic understanding
of the language and probably attempted to understand one of the key concepts of it
before, namely monads. If you had difficulties understanding them, or you did
understand them, but want some deeper insight into the motivation and background,
then this tutorial is for you.

Haskell is a functional programming language. There is nothing special about this, but
its design makes it easy to learn and comprehend and very effective and efficient in
practice. A very special feature of Haskell is the concept of generalization. That means,
instead of implementing an idea directly, you rather try to find a more general idea,
which implies your idea as a special case. This has the advantage that if you find other
special cases in the future, you don't need to implement them, or at least not fully from
scratch.

However, the traditional programmer never had to face generalization. At most they
faced abstraction, for example in the concept of object-oriented programming. They
preferred to work with concrete and specialized concepts, i.e. the tool for the job.
Unfortunately this attitude is still ubiquitous. The concept of monads is a particularly
sad example, as monads are extremely useful, but Haskell newcomers often give up
understanding them properly, because they are a very abstract structure, which allows
implementing functionality at an incredibly general level.

Some of you may have read Brent Yorgey's Abstraction, intuition, and the "monad
tutorial fallacy" [5], which explains very evidently why writing yet another
interpretation of monads is useless for a newcomer. When I look around, I see the
above as an additional problem: Many people try to avoid abstract concepts, despite
their convenience, once you understand them. So my main intention with this tutorial is
to defeat the fear of abstract concepts and to shed some light on monads as what they
really are: An abstraction for a certain style of combining computations.

Understanding Haskell Monads http://ertes.de/articles/monads.html

1 of 27 4/24/09 7:24 AM

I hope, it is helpful to you and I would be very grateful about any constructive
feedback from you.

2. Motivation
Haskell [1] is a purely functional programming language. Functions written in it are
referentially transparent. Intuitively that means that a function called with the same
arguments always gives the same result. More formally, given you have a function f ,
replacing its call by its result has no effect on the meaning of the program. So if
f 3 = foo , then you can safely replace any occurence of f 3 by foo and vice
versa. Purely functional means that the language doesn't allow side-effects to happen in
a way that destroys referential transparency. That way, the result of a function depends
solely on its arguments, hence it has no side effects.

This resembles the mathematical notion of a function, which makes reasoning about the
code much easier and in many cases enables the compiler to optimize much better than
code, that is not referentially transparent. Furthermore the order of evaluation becomes
meaningless. So for an expression (x,y) the compiler is free to evaluate x or y first
or even skip evaluation of either one, if it isn't needed. This gives flexibility (as you
can have infinite data structures or computations, as long as only a finite portion is
used) and high performance. Finally, the compiler is free to take any possible path to
the result. This makes Haskell programs insanely parallelizable, as a compiler can
decide to take multiple paths in parallel. It can decide to calculate x and y at the same
time.

The opposite of referentially transparent is referentially opaque. A referentially opaque
function is a function that may mean different things and return different results each
time, even if all arguments are the same. The canonical example of this is a random
number generator. In most languages a random number function takes no arguments at
all. Although it may sound counterintuitive, even a function that just prints a fixed text
to the screen and always returns 0, is referentially opaque, because you cannot replace
the function call with 0 without changing the meaning of the program.

As pointed out above, an obvious consequence is that in Haskell you can't write a
function random without arguments, which returns a pseudorandom number, because it
would not be referentially transparent. In fact, a function, which doesn't take any
arguments, isn't even a function in Haskell. It's simply a value. A number of simple
solutions to this problem exist. One is to expect a state value as an argument and
produce a new state value together with a pseudorandom number:

random :: RandomState -> (Int, RandomState)

Another simple solution is to expect a seed value as an argument and produce an
infinite list of pseudorandom numbers. You can write this easily in terms of the
random function above:

randomList :: RandomState -> [Int]
randomList state = x : randomList newState
 where
 (x, newState) = random state

So the problem of deterministic sequences like the above can be solved easily, and
compared to the referentially opaque random function, which you usually find in
imperative languages, you get a useful feature: You can thread the state, so you can
easily go back to an earlier state or feed two functions with the same pseudorandom
sequence.

What about input/output? A general purpose language is almost useless, if you can't
develop user interfaces or read files. We would like to read keyboard input or print

Understanding Haskell Monads http://ertes.de/articles/monads.html

2 of 27 4/24/09 7:24 AM

things to the terminal. Meet getChar , a hypothetical function, which reads a single
character from the terminal:

getChar :: Char

You will find that this breaks referential transparency, because each reference to this
function may yield a different character. We have seen that we can solve this problem
by expecting a state argument. But what's our state? The state of the terminal? Well,
let's get more general and just pass the state of the universe, which is of the
hypothetical type Universe . So we adjust the type of getChar , and we implement a
twoChars function to demonstrate how to use the getChar function:

getChar :: Universe -> (Char, Universe)

twoChars :: Universe -> (Char, Char, Universe)
twoChars world0 = (c1, c2, world2)
 where
 (c1, world1) = getChar world0
 (c2, world2) = getChar world1

We seem to have found a useful solution to our problem. Just pass the state value
around. But there is a problem with this approach. Firstly, of course, that is a lot of
typing for the programmer, since we need to pass the world's state around all the time.
Secondly and more importantly, what is a very useful and desirable feature for
functions like random , becomes the main obstacle for strictly impure operations like
reading keyboard input or writing to the terminal:

strangeChars :: Universe -> (Char, Char)
strangeChars world = (c1, c2)
 where
 (c1, _) = getChar world
 (c2, _) = getChar world

Let's try to understand what the code above is attempting to do. We read the character
c1 from our universe, which is in state world . We also read the character c2 from
the universe with the same state, so we really go back in time. But when do we do
that? The order in which c1 and c2 get computed is undefined, since we didn't
sequence our world state like in the twoChars function. Next thing is that
strangeChars doesn't return the new state of the universe, so after its values are
demanded, the fact that it read from the terminal is forgotten, just like it never
happened.

Conclusion: We can thread the state of a pseudorandom number generator without
problems, but we must not thread the state of the universe! There exist a few solutions
to this problem. For example, the purely functional language Clean uses uniqueness
types, which is basically the above, but the language detects and thwarts attempts to
thread world state, so I/O with explicit state passing like above becomes consistent.
Haskell takes another approach. Instead of passing the world state explicitly, it employs
a structure from category theory called a monad.

3. An example
As you are reading this tutorial, you have probably already found that there are many
possible interpretations of monads. They are an abstract structure, and at first it can be
difficult to understand where they are useful. The two main interpretations of monads
are as containers and as computations. These two explain very well how existing
monads are useful, but firstly in my opinion they still don't tell you how to recognize
things as monads, and secondly they can look quite incompatible at times (although

Understanding Haskell Monads http://ertes.de/articles/monads.html

3 of 27 4/24/09 7:24 AM

they aren't).

So I'm trying to provide you with an idea of monads, that is more generic and allows
you to find familiar patterns in monad usage. Particularly it should make it easy to
recognize monads as such. However, I won't give you a concrete notion yet. Let's start
with a motivating example instead.

Say you have a function, which may not give a result. What would be the type of that
function? The exact square root over the integers is a good example, so let's write it:

isqrt :: Integer -> Integer

What is isqrt 3? What is isqrt (-5)? How do we handle the case where the
computation doesn't have any result? The first idea that comes to mind originates from
the imperative world. We expect the argument to be a square, otherwise we abort the
program with a signal or exception. We say that if the argument is not a square, then
the result is ⊥ or bottom.

The ⊥ value is a theoretical construct. It's the result of a function, which never returns,
so you can't observe that value directly. Examples are functions, which recurse forever
or which throw an exception. In both cases, there is no ordinary returning of a value.

Mathematically more correct would be an approach where invalid arguments are
impossible by concept:

isqrt :: Square -> Integer

On a first glance, this seems to work, but what if we need the square root of an
Integer? We need to convert it to a Square first, at which point we're facing the
same problem. Also often we actually want our program to handle the case, where
there is no result. So write a wrapper type Maybe :

data Maybe a = Just a | Nothing

A value of type Maybe a is either Nothing or Just x , where x is of type a . For
example, a value of type Maybe Integer is either Nothing or Just x , where x is
an Integer . So now we can change the type of our integer square root function and
add a (not so optimal, but comprehensible) implementation:

isqrt :: Integer -> Maybe Integer
isqrt x = isqrt' x (0,0)
 where
 isqrt' x (s,r)
 | s > x = Nothing
 | s == x = Just r
 | otherwise = isqrt' x (s + 2*r + 1, r+1)

Now that Nothing is a valid result, our function handles all cases. Here are a few
examples of isqrt values:

isqrt 4 = Just 2
isqrt 49 = Just 7
isqrt 3 = Nothing

What if we would like to calculate the fourth root? We now have a square root
function, so wouldn't it be nice to write the fourth root function in terms of square
roots? And we would like to retain the feature of returning Nothing , if there is no
result. How could we write that function? I'm very confident you will quickly come up

Understanding Haskell Monads http://ertes.de/articles/monads.html

4 of 27 4/24/09 7:24 AM

with something like this:

i4throot :: Integer -> Maybe Integer
i4throot x = case isqrt x of
 Nothing -> Nothing
 Just y -> isqrt y

Try to understand this code as well as possible. It first takes the square root of its
argument. If there is no square root, then naturally there is no fourth root. If there is,
then it takes the square root of the square root, which may fail again. So this is a
Maybe computation, which has been built from two Maybe computations.

Do you grasp the similarity with other wrapper types like lists? You could implement
the same using lists:

isqrt :: Integer -> [Integer]
isqrt = ...

i4throot :: Integer -> [Integer]
i4throot x = case isqrt x of
 [] -> []
 [x] -> isqrt x

Of course, the list type allows multiple results, too, so you could even return both
square roots of the number in isqrt . You would need to rewrite i4throot to take
that into account, though, as it currently supports only a single square root.

The general idea is: You have some computation with a certain type of result and a
certain structure in its result (like allowing no result, or allowing arbitrarily many
results), and you want to pass that computation's result to another computation.
Wouldn't it be great to have a nice generic syntax for this idea of combining
computations, which are built from smaller computations, and which use such a
wrapper type like Maybe or lists? It would be even better to abstract away certain
structural properties of the result, so the fact that lists allow multiple values would be
taken into account implicitly. We're approaching monads.

4. Monads
You have learned the basic idea of monads at the end of the last section. A monad is a
wrapper type around another type (the inner type), which adds a certain structure to the
inner type and allows you to combine computations of the inner type in a certain way.
This is really the full story.

To achieve that, a monad makes values of the inner type indirect. For example, the
Maybe type is a monad. It adds a structure to its inner type by allowing lack of a
value, and instead of having a value 3 directly, you have a computation, which results
in 3, namely the computation Just 3 . Further, you have a computation, which doesn't
have a result at all, namely the computation Nothing .

Now you may want to use a computation's result to create another computation. This is
one of the important features of monads. It allows you to create complex computations
from simpler parts intrinsically, i.e. without requiring a notion of running computations.

Side note: To emphasize on how monads are nothing special or magic, I will refrain
from using Haskell's nice syntactic sugar for now and implement and use them in
plain.

Technically, if you find that your type is a monad, you can make it an instance of the
Monad type class. The following is the important part of that class (there are two more

Understanding Haskell Monads http://ertes.de/articles/monads.html

5 of 27 4/24/09 7:24 AM

functions, but we don't need them now):

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

The return function, as its type suggests, takes a value of the inner type and gives a
computation, which results in that value. The (>>=) function (usually used in the infix
>>= notation) is more interesting: c >>= f is a computation, which takes the result
of c and feeds it to f . You can view it as a method to incorporate an intermediate
result (the result of c) into a larger computation (the result of f). How this looks like,
will become clear shortly. I will call c the source computation and f the consuming
function from now on.

The (>>=) function is usually called the binding operator or bind function, because it
binds the result of a computation to a larger computation. The function f (being the
second argument to (>>=) is what I will call a monadic function in the rest of this
tutorial. It is a function, which results in a computation.

The power of the (>>=) comes from the fact that it leaves unspecified, in what way
the result of the source computation is passed to the consuming function. In the Maybe
monad, there may be no result at all, so the consuming function may never be actually
called.

The Maybe monad
It's much easier to get started with an example. Imagine for a moment that Maybe
doesn't exist. So let's define it:

data Maybe a = Just a | Nothing deriving (Eq, Show)

You will quickly find that the Maybe type is a wrapper type around an inner type,
which adds a certain structure to the inner type. The return function for Maybe is
easy to implement: In the Maybe monad, Just x is a computation, which results in
x .

More interestingly, say, you need the result of a Maybe computation (the source
computation) in another computation, so you want to bind it to a variable x , then if the
source computation has a result, then x becomes that result. If there is no result, then
(because of the lack of a value for x), the entire computation has no result. This idea
is implemented through the binding function (>>=) :

instance Monad Maybe where
 return x = Just x

 Nothing >>= f = Nothing
 Just x >>= f = f x

Passing the result of the computation Nothing to a consuming function f means
resulting in Nothing right away (since there is no result), without running f at all.
Passing the result of Just x to a consuming computation f means passing x to f
and resulting in f 's result.

Now let's revisit our exact integer fourth root function i4throot . It calculates the
exact integer square root of its argument, and if there is any result, it calculates the
exact integer square root of that result. Does this sound familiar? It should, because we
can now exploit the monadic properties of Maybe (and you should definitely try this
out):

i4throot :: Integer -> Maybe Integer

Understanding Haskell Monads http://ertes.de/articles/monads.html

6 of 27 4/24/09 7:24 AM

i4throot x = isqrt x >>= isqrt

The list monad
Similar to the Maybe type, you will find that the list type is a wrapper type around an
inner type, which adds a list structure to that inner type, so it allows arbitrarily many
results. What about binding a computation's result to a monadic function?

To answer that, just ask yourself: What is a list in the first place? It represents an
arbitrary number of values, so it represents non-determinism. In other words: The
computation [2,3,7] is one, which results in 2, 3 and 7.

Now imagine you need the result of a list computation in another computation, so you
want to bind that result to the variable x . If there is no result, then the entire
computation has no result (as there is no value for x), the same idea as in Maybe . If
there is one result, x becomes that one result. What about two results? If there are
multiple values for x , then there will be multiple incarnations of the consuming
computation, one for each of the result values. The resulting computation collects all
the individual results into one larger result.

[10,20,40] >>= \x -> [x+1, x+2]

This computation results in [11,12,21,22,41,42] , because you bind the result of
[10,20,40] to x . But there are three results, so there will be three incarnations of
[x+1, x+2] , one with x == 10 , one with x == 20 and one with x == 40 . The
result of each of the incarnations is merged together into one large end result.

Again, return is easy to implement: In the list monad, [x] is a computation, which
results in x . Have a look at the monad instance for the list type below:

instance Monad [] where
 return x = [x]
 xs >>= f = concat . map f $ xs

Again, the (>>=) function is the interesting one: As its first step, it maps the
consuming function f over all values of the source list, thereby running each of the
results of xs through f . Since each time f results in a list in its own right, the result
of this mapping is a list of lists. As its second step, it takes this result list of lists and
forms one larger result list by concatenating the individual lists. The following code
illustrates this again:

multiples :: Num a => a -> [a]
multiples x = [x, 2*x, 3*x]

testMultiples :: Num a => [a]
testMultiples = [2,7,23] >>= multiples

The result of testMultiples is [2,4,6,7,14,21,23,46,69] , because it takes
each value of the source list, feeds it into the consuming function multiples ,
resulting in three result lists [2,4,6] , [7,14,21] and [23,46,69] . In other
words: It maps the multiples function over the source list. Finally it concatenates
the result lists to form a single list containing all results.

The identity monad
The identity monad is of little use in practice, but I'm giving it here as a basis for
documenting State and the IO monad later, and of course for the sake of monad
theory and completeness. Also you may find uses for the identity monad in monad
transformers, about which I will talk later.

Understanding Haskell Monads http://ertes.de/articles/monads.html

7 of 27 4/24/09 7:24 AM

A computation in the identity monad simply gives a value, so it doesn't add any special
structure like Maybe or the list monad do. Binding an identity computation's result to a
consuming function simply means passing that single result verbatim.

data Identity a = Identity a

instance Monad Identity where
 return = Identity
 Identity x >>= f = f x

The computation Identity 5 is a computation, which results in 5, so it's natural that
return x simply gives Identity x , as return x should give a computation,
which results in x . Also passing the result x of the computation Identity x to a
consuming function f means simply giving that result verbatim to f .

5. Properties of monads

The monad laws
First of all, for something to really be a monad, it has to adhere to three laws. Besides
that these are really needed by category theory, they also make sense:

return x >>= f == f x1.
c >>= return == c2.
c >>= (\x -> f x >>= g) == (c >>= f) >>= g3.

The first law requires return to be a left identity with respect to binding. This simply
means that turning x into a computation, which results in x and then binding that
computation's result to a consuming function f , is the same as passing x to f directly.
Sounds obvious, doesn't it?

The second law requires return to be a right identity with respect to binding. That
means that binding the result x of a source computation to the return function
(which is supposed to give a computation, which results in x) is the same as the
original source computation (as that one results in x). That should be just as obvious
as the first law.

The third law requires binding to be associative. To understand it, consider a
computation, which results in the 30th root of an integer or Nothing , if there isn't
any. You can build it up by taking the square root, then the cube root and finally the
fifth root of that number:

i30throot :: Integer -> Maybe Integer
i30throot x = isqrt x >>= icbrt >>= i5throot

You can take the computation of the sixth root (isqrt x >>= icbrot) and feed its
result to i5throot to calculate the fifth root of it, or you can take the computation of
the square root isqrt x and feed its result to (\y -> icbrt y >>= i5throot)
to calculate the 15th root of it. The result is the same. This is required by the third
monad law.

Support functions
As said earlier, the Monad class given above is not complete. There are two more
functions, (>>) and fail :

class Monad m where

Understanding Haskell Monads http://ertes.de/articles/monads.html

8 of 27 4/24/09 7:24 AM

 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
 (>>) :: m a -> m b -> m b
 fail :: String -> m a

The (>>) function is very convenient, if the result of a computation is meaningless or
not needed. You don't need to provide it in your instance definition, as it can be easily
derived from (>>=) , and this is the default definition:

a >> b = a >>= const b

Suppose a and b are computations, and you want a computation, which runs both a
and b and results in the result of b , ignoring the result of a . With the binding
function, you would write something like a >>= _ -> b or a >>= const b .
With the convenience function (>>) you can simply write a >> b . Later in the
section about implicit state, this will become useful.

This function is usually used with computations, which result in a value of type () ,
the unit type, which is used, when there is no meaningful result. Other than ⊥ there is
only one value of type () , namely () . The unit type is analogous to the void type
in C, although C's void type does not have any values, while () does.

fail is a function, which takes an error string and gives a computation, which
represents failure, possibly including the given error string. The default definition gives
a ⊥ computation, so calling this function aborts the program. Ignore this function for
now. We will see later, where it's useful.

Interpreting monadic functions and computations
A monadic computation, which you can get using monadic functions like return or
our isqrt function, or by using constructors of monads like Just , has a different
nature than a regular value. I have stated earlier that it is correct to view monadic
values as computations instead of values. This has the following background.

Consider Maybe . A monadic value Just 3 is not the value 3 right away. It is a
computation which results in 3. This may seem unnatural at first, since the result is
already there, but try to interpret what the binding function (>>=) does. It takes a
source computation and a consuming monadic function and binds the source
computations result to the argument of the consuming function. What binding means is
left to the monad. This gives an intrinsic idea of using the result of a computation in
another computation, without requiring a notion of running computations.

Importantly, as long as you don't request the result, there is no result, there is just a
computation. How do we request results? The most obvious method is to request
results inside the corresponding monad, for example by binding. But as you just
learned, binding does not yield a result. It yields a computation. Extracting a result and
using it is part of that computation, but what about requesting a real end result, which
is not itself a computation? In other words, what about running a computation?

Trapped in a monad
You have seen that monads are containers, which denote computations. You can create
computations to result in a certain value, and you can bind the result of computations
to monadic functions. But we also want results. We would like to extract the 3 from
Just 3 . So far, we have only seen monads with known constructors, like Maybe and
lists, so you can use pattern matching or even equality to extract values from a
monadic value.

Even if the constructors (Just , Nothing , [] and (:)) were unknown, you have

Understanding Haskell Monads http://ertes.de/articles/monads.html

9 of 27 4/24/09 7:24 AM

support functions to request results from a computation, which look different depending
on the monad. For example, for the list monad, you have functions like head or
last . For Maybe you have fromJust or fromMaybe .

But what if you don't know the constructors and there are no support functions to
extract a value out of a computation? Then it is indeed not possible to do so! This is
important, because it allows us to do some interesting things with monads. This
property is the basis for interacting with the outside world without passing world state
around. It is the basis for the IO monad, which I will talk about soon.

6. Implicit state
I have talked a lot about state in the second section. State is so integral to most other
programming languages, that you likely have never bothered realizing that it even
exists, since the usual imperative model of programming views the whole program as
one giant state, which is continuously modified. This is certainly not surprising, since
most languages have been modeled to reflect the Turing machine model of
computation. Haskell is (and must be) different.

What is state in the first place? It is a modifyable environment your program or part of
your program has access to throughout its life. For this to fit into the purely functional
model and to retain referential transparency, state needs to be explicit, for example as a
function argument. See the random function in the first section again to see, how this
works:

random :: RandomState -> (Int, RandomState)

While in non-pure languages, a function returning a random number can get away
without passing state around, for example by using global variables, this is not the case
in Haskell. Of course, this is a monads tutorial, so I would not mention state, if
monads could not help here. ;)

Indeed, monads do help. In fact, they are truely a virtue for everything that has to do
with state. Say hello to State monads:

data State s a

I'm not showing you State 's complete definition yet, because the details can be
confusing at first. For now, let's limit us to how State is used. Remember that you
need to import Control.Monad.State to use it.

State is a type parameterized over two variables s and a . For some state type s ,
the type State s is a monad. A computation of type State s a is a computation
depending on a state value of type s and has a result of type a . Throughout the
computation, state changes can be applied in a purely functional way.

Looking at how the return and (>>=) functions for state monads are defined, they
appear to be equivalent to the identity monad. They don't add any special structure to
the inner type, so a computation in the state monad gives exactly one result.
return x gives a computation, which results in x , and c >>= f gives a
computation, which passes the one single result of c to f .

You can run a stateful computation using the support functions runState ,
evalState and execState :

runState :: State s a -> s -> (a, s)
evalState :: State s a -> s -> a
execState :: State s a -> s -> s

Understanding Haskell Monads http://ertes.de/articles/monads.html

10 of 27 4/24/09 7:24 AM

All of them take a stateful computation and an initial state as their arguments and give
(part of) the result of that computation. Although they seem to break referential
transparency on a first glance, they don't, because you feed into them all information
needed to produce the result, and indeed, the result is always the same, if the
arguments are the same. runState is the basis of the other two. It produces both the
result value and the end state as a tuple.

Of course, a state monad would be useless, if you couldn't actually use the state in
computations, because you would have just another identity monad. So there are two
monadic support functions get and put to retrieve and change the current state
respectively. They make the subtle difference between state monads and the identity
monad:

get :: State s s
put :: s -> State s ()

The get computation has a result, which is the current state (that's why the result type
is the same as the state type), and the put function takes a new state value and
replaces the current state with it. Let's try this out:

runState (put 3) 4 = ((), 3)

This example should be obvious. The computation put 3 simply replaces the current
state (which is the initial state passed to runState in this case) with the value 3 and
returns the result value () . Since this computation ignores its initial state (given
through the runState function), the result is always ((), 3) , independent of the
initial state.

runState (get >>= \s -> return (2*s)) 10
 = (20, 10)

This example is more interesting. It makes use of the initial state 10 given to it in that
it returns it doubled as its result. The state itself is not changed, so the result value is
20, while the end state is 10.

runState (get >>= \s -> put (s+1)) 10
 = ((), 11)

The computation given here first takes the current state (which is the initial state in this
case), binds it to s and puts back s+1 . The result of that computation is () , but the
end state is the initial state plus one.

runState (get >>= \s -> put (s+1) >> return (s^2)) 3
 = (9, 4)

Finally an example, where both the result value and the state value are significant. The
state computation takes the current (in this case initial) state, binds it to s , then puts
s+1 back as the new state and finally returns s^2 as the result.

Of course, such stateful computations can be further combined, so the current state
doesn't have to be the initial state. Let's see how this works by writing a simple state-
backed pseudo-random number generator:

import Data.Word

type LCGState = Word32

lcg :: LCGState -> (Integer, LCGState)
lcg s0 = (output, s1)

Understanding Haskell Monads http://ertes.de/articles/monads.html

11 of 27 4/24/09 7:24 AM

 where s1 = 1103515245 * s0 + 12345
 output = fromIntegral s1 * 2^16 `div` 2^32

This function implements a pseudo-random number generator called a linear
congruential generator, which advances its current state s0 to s1 with the following
formula: s1 = (1103515245 * s0 + 12345) mod 2^32, and then outputs the highest 16
bits of s1 as a random number.

Using a State monad, we can make this passing of the LCGState value implicit.
We write a computation getRandom that takes the current state value, passes it to
lcg , then updates the state and returns a random number.

getRandom :: State LCGState Integer
getRandom = get >>= \s0 -> let (x,s1) = lcg s0
 in put s1 >> return x

You can now use the getRandom computation to build larger computations. It is
important that you interpret functions like get and getRandom as computations. The
result of them are not values, but computations. You can bind the result of those
computations to other computations using the (>>=) function. This property preserves
referential transparency, because you're not dealing with results, but with the
computations to get them. You can combine these computations as you like:

addThreeRandoms :: State LCGState Integer
addThreeRandoms = getRandom >>= \a ->
 getRandom >>= \b ->
 getRandom >>= \c -> return (a+b+c)

Replacing the getRandom call with its result results in the same program, because the
result is not a value, but a computation. Try runState addThreeRandoms x with
different values for x .

Now what is the great advantage here? Look closer at the addThreeRandoms
function. Do you find it? The state of the generator is not mentioned anywhere. It is
implicit. No explicit passing, not even to getRandom . Every computation of type
State s a has implicit state of type s , and this state is carried along the
computation through binding.

And you have seen, functions like put modify the state without giving any meaningful
result. You could use this, for example, to implement a convenience function modify
to modify the state (and in fact, this function is even predefined for you):

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

7. The IO monad
Now look at State again, and then think back to the second section "Motivation"
above. Do you remember the hypothetical Universe type, which we passed explicitly
there? Couldn't we use a State monad to turn the state of our universe implicit? Yes,
if this type existed, we could:

type IO = State Universe

This would already solve our problem, wouldn't it? Not yet, because there is a catch:
Where does the initial state of the universe come from? The solution is to have a
monadic main computation, which is the entry point of our Haskell program. Running
the program means running the main computation with the current state of the

Understanding Haskell Monads http://ertes.de/articles/monads.html

12 of 27 4/24/09 7:24 AM

universe as its initial state:

main :: IO ()

In other words, the whole program is simply one IO computation called main , which
may be built from smaller computations, and which, given the implicit state of the
universe, can query and change this state. Now, just like the put function, it makes
sense to have a putStrLn function, which is a computation altering part of this
implicit state:

putStrLn :: String -> IO ()

Although, if there was really a Universe type, it would make sense to have a bunch
of Universe -manipulating functions and then use a State monad to turn it into
implicit state, there is a problem with this approach, namely threading. In the second
section, we have seen that threading the state of the universe is pointless by concept.
We cannot go back in time, and threading universe state is doing just that.

To make threading of the universe state impossible, it must be impossible to reference
that state, because as long as we can give the state of the universe a name, we can use
this name to refer to it arbitrarily often. To illustrate this problem, suppose there is a
Universe -function writeLog , which writes a log entry:

writeLog :: Universe -> String -> Universe

strangeWriteLog :: String -> IO ()
strangeWriteLog msg = get >>= \world0 ->
 put (writeLog world0 msg) >>
 put (writeLog world0 "")

This is basically the same problem as in the second section. As long as we can refer to
the state of the universe in some way, we can thread it. The code above takes the state
of the universe using get , writes the log entry and puts the modified universe state
back. After that, it uses a version of the universe, where the log entry has not been
written yet, and writes an empty line to that. Finally it puts the modified version of the
latter universe back. This code goes back in time.

Again, there seems to be a simple solution to this problem. We simply disallow using
get and put with IO , and we disallow using writeLog directly. We provide a safe
wrapper version instead:

writeLogSafe :: String -> IO ()

Now we have seen that, in the context of IO (= State Universe), we must
artifically disallow using get and put . Further, we don't need runState for that
monad, because the initial state comes implicitly with running the program (i.e. running
the main computation). This takes us to the conclusion that IO gets along without a
Universe type at all. If there is no state value to refer to, we don't need a type for it.
Hence, we don't need the State type either. Instead, we define IO independently as a
completely opaque type:

data IO a

This is just another state monad, but it is not written in terms of State , and there is
no type for the state of the universe. There is also no state value, so there is no get or
put , which may query or change it. Since there is no value to refer to, it's impossible
to thread the state of the universe.

Taking this further, there is also no unsafe writeLog like the one above anymore, for

Understanding Haskell Monads http://ertes.de/articles/monads.html

13 of 27 4/24/09 7:24 AM

which we would need to write a safe wrapper first, but instead writeLog is already a
safe monadic function:

writeLog :: String -> IO ()

This function takes a string and results in a computation, which takes the state of the
universe and adds a log entry to it. With this approach, the threading problem is
solved. So we have abstracted away all problems with impure operations in our purely
functional language. For us, there is no way to run an IO computation other than by
running main , and that can only be done through executing the program. We can only
combine IO computations in terms of binding, and the only way to change the state of
the universe is to use opaque state-changing functions like the (hypothetical)
writeLog function. We are trapped in the IO monad, and this is how input/output in
Haskell is consistent with referential transparency.

Properties of IO
You may find that State monads as well as IO look very similar to the identity
monad. The idea of what a value is, is left simply as exactly one value, just like in the
identity monad. Also, binding the result value of a computation means simply passing
this one value, again just like in the identity monad. However, you can interpret both
State monads and IO as implicitly and invisibly passing the current state besides the
value.

IO is also special in that it enforces sequencing. While usually in a Haskell program,
the order of evaluation is undefined, it is not so for combining IO computations. The
(>>=) function always evaluates its first argument before evaluating its second. This
makes input/output code much more predictable.

Further, IO is one of the few monads without a real internal representation. There is
no state value at all. Think of the state value being really the state of the universe.
Obviously we cannot turn the real state of the universe into some discrete value in
memory, and there is also no reason to do so. The IO monad is rather a theoretical
concept to make impure operations consistent with referential transparency, and to think
of the state of the universe being really implicit state, just like in a State monad.

Predefined computations
As suggested above, computations changing the state of the universe must be opaque.
So for a program to be useful, it must have access to a number of predefined functions
for performing basic operations like accessing files, interacting with the user,
networking, etc. I'm listing only the most basic operations, so you can get started.
Refer to the System.IO module for more I/O functions.

putStr :: String -> IO ()
putStrLn :: String -> IO ()
print :: Show a => a -> IO ()

These three functions can be used to print a string or some arbitrary showable value to
the standard output (stdout). print is mainly useful for debugging purposes. Both
putStr and putStrLn write a string verbatim to stdout , the latter appends a line
feed.

getChar :: IO Char
getLine :: IO String

These two computations read from standard input (stdin) one character or one line,
respectively. Using these, you can already write a program, which echoes the user's
input:

Understanding Haskell Monads http://ertes.de/articles/monads.html

14 of 27 4/24/09 7:24 AM

main :: IO ()
main = getLine >>= \line ->
 putStrLn line >>
 main

With a little extension, this program quits upon entering "quit":

main :: IO ()
main = getLine >>= \line ->
 if line /= "quit"
 then putStrLn line >> main
 else return ()

8. Syntactic sugar

The do-notation
The (>>=) function is associative. Its first (left) argument is a computation, of which
the result is bound to the argument of the consuming function given by the second
(right) argument. That function results in a computation, so the following is a very
frequent and familiar pattern:

comp >>= \x -> ...

Having to write whole programs with this combinator style and lambda expressions can
become quite painful and annoying. That's why Haskell supports a very beautiful and
intuitive notation called the do-notation. The above can be written as:

do x <- comp
 ...

Since the (>>=) function is associative (as required by the third monad law), if we
want to bind the results of two computations comp1 and comp2 , we usually leave the
parenthesis away and just write:

comp1 >>= \x -> comp2 >>= \y -> ...

This gets increasingly ugly, but the associativity of (>>=) allows us to align this
vertically instead, since we don't need to care about parenthesis:

do x <- comp1
 y <- comp2
 ...

Of course, more sugar exists for the convenience function (>>) . Instead of writing
a >> b , you can simply align a and b vertically in do-notation. So you would write

c >>= \x -> f x >> g (x+1)

simply as:

do x <- c
 f x
 g (x+1)

Let's write the last IO example above using this notation:

Understanding Haskell Monads http://ertes.de/articles/monads.html

15 of 27 4/24/09 7:24 AM

main :: IO ()
main = do
 line <- getLine
 if line /= "quit"
 then putStrLn line >> main
 else return ()

This example should be self-explaining. Instead of using the (>>=) function, we have
bound the result of getLine to a name. For another example, let's reimplement the
i4throot function from the third section:

i4throot :: Integer -> Maybe Integer
i4throot x = do
 squareRoot <- isqrt x
 isqrt squareRoot

Please consider that the above code is an example of overusing the do-notation. The
original code from the third section is much clearer. However, more interesting
examples are the reimplementations of getRandom and addThreeRandoms from the
section about implicit state:

getRandom :: State LCGState Integer
getRandom = do
 s0 <- get
 let (x,s1) = lcg s0
 put s1
 return x

addThreeRandoms :: State LCGState Integer
addThreeRandoms = do
 a <- getRandom
 b <- getRandom
 c <- getRandom
 return (a+b+c)

The getRandom function binds the current state to the name s . The let syntax
without the in keyword is specific to the do-notation, in that it's in effect for the rest
of the do block. Finally, two consequtive monadic computations (in this case put s1
and return x) are combined using (>>) . This gives a notation, that looks quite
semi-imperative. However, apart from looking imperative in some cases, this notation
has little to do with imperative programming, so the keyword do may be misleading.

To make this clearer, we will have a closer look at the list monad now. As you have
seen, the list monad embodies non-determinism, so binding to list computations means
passing each value of the source list to a non-deterministic function. The individual
results are then merged together to give the result list. Using do-notation it becomes
obvious what this means:

do x <- [1,2,3]
 y <- [7,8,9]
 return (x + y)

The first line binds the list computation [1,2,3] to the name x . There is really
nothing wrong with the interpretation that x represents all three values at the same
time. It is a compact name for a non-deterministic value. Also y is bound to
[7,8,9] , so it represents the values 7, 8 and 9 at the same time. So x + y is a
non-deterministic value representing nine values altogether. The result of the above
code will be:

Understanding Haskell Monads http://ertes.de/articles/monads.html

16 of 27 4/24/09 7:24 AM

[8,9,10,9,10,11,10,11,12]

What is important here is that the order or even strictness of evaluation of the above
code is completely undefined. The compiler may choose to evaluate the x values first
or the y values first or both in parallel. Although the code appears to be imperative,
it's by far not.

Pattern matching in do-notation
A very useful feature of bindings in the do-notation is the fact that they can do pattern
matching, just like the non-sugared lambda syntax can. Instead of writing
c >>= \(x,y) -> ... , you can write:

do (x,y) <- c
 ...

So to do pattern matching, there is no reason to use case ... of . However, there is
a little difference. The usual lambda-based pattern matching throws an exception, if
pattern matching fails. The pattern matching in do-notation is more general: If pattern
matching fails, instead of throwing an exception, the entire computation in the do-block
results in fail str , where str is some implementation-dependent error string like
"Pattern matching failed". The error string may include source code file name and
line/column numbers.

testMaybe :: Maybe (Integer, Integer)
testMaybe = do
 [x] <- return []
 return (x-1, x+1)

This code fails at pattern matching in the binding. When that happens, then the part of
the do-block following the binding isn't evaluated, but the entire computation results in
fail "Pattern matching failed." . As noted, the error string is
implementation-dependent.

In the Monad instance of Maybe , the fail function is implemented as:

instance Monad Maybe where
 ...
 fail = const Nothing

That means, if, in the Maybe monad, pattern matching in a do-block fails, then the
entire computation is Nothing , notably not throwing an exception like case would.
Similarly, in the list monad, if pattern matching in a do-block fails, then the entire
computation is [] :

instance Monad [] where
 ...
 fail = const []

But this shouldn't mislead you to the conclusion that a failing pattern match in a
do-block must lead to an [] end result. This is indeed not the case:

testList :: [Integer]
testList = do
 Just x <- [Just 10, Nothing, Just 20]
 [x-1, x+1]

This code fails at pattern matching in the binding, but only in a single incarnation of

Understanding Haskell Monads http://ertes.de/articles/monads.html

17 of 27 4/24/09 7:24 AM

the consuming computation [x-1, x+1] , namely the one, where the result is
Nothing and hence fails to pattern-match against Just x . This incarnation has no
result, but the other two have results. The first incarnation (the one, where Just x
matches Just 10) has the results 9 and 11, the second incarnation is the computation
[] , because pattern matching results in calling fail , and the third and final
incarnation has the results 19 and 21. So the end result of this computation is
[9,11,19,21] , although a pattern match failed somewhere inside of the computation.

Note: This special pattern match rule is only effective for bindings (the <- syntax) in a
do-block. It is not effective for pattern match failures caused by case or let , even if
they are parts of a do-block.

List comprehensions
List comprehensions are a very convenient shortcut to do-notation for lists. A list
comprehension is a description of a list, which consists of two parts separated by a
vertical bar ("|", the pipe symbol), which is written in brackets, like
[exp | desc] . The right part desc contains bindings, lets and guards
separated by commas. The left part exp is an expression using the binds and lets
from the right part. Here is an example:

[x^2 + y^2 | x <- [1..3], y <- [4..6], x+y /= 7]

The right part contains two bindings, binding the list [1..3] to x and [4..6] to y .
The expression x+y /= 7 is called a guard. Combinations of x and y , for which the
guard evaluates to False will be filtered out. The expression x^2 + y^2 on the left
side of the vertical bar describes the value to be included in the list. This example is
evaluated to:

[17,26,20,40,34,45]

Besides bindings, you can also use let expressions on the right side of the vertical
bar:

[x + sx | x <- [1..10], let sx = sqrt x, sx > 2]

To save us from having to repeat sqrt x , and thus to avoid common subexpressions,
we used a let expression.

9. Too much sugar
As too much sugar isn't good for our body, it's also not too good for the body of your
source code. Here is a collection of common exaggerations with syntactic sugar, which
you should avoid, together with reasons why it's better to avoid them. After all, I
decided to relay the introduction of the sugar to a late section in this tutorial for some
good reason. The reason is to pull you away from imperative thinking.

Superfluous do

main :: IO ()
main = do putStrLn "Hello world!"

The do keyword is superfluous in this code. It's correct as do c is translated to simply
c , if c is a computation. However, it gives the impression of having a special and
isolated imperative syntax for input/output code, especially to beginners reading that
code. But monads are nothing special or magic, so better write:

Understanding Haskell Monads http://ertes.de/articles/monads.html

18 of 27 4/24/09 7:24 AM

main :: IO ()
main = putStrLn "Hello world!"

Superfluous names

do line <- getLine
 putStrLn line

This introduces a name, where a name doesn't really add convenience. It requires you
to read more code to understand the obvious meaning of what it's supposed to do,
namely this:

getLine >>= putStrLn

Think of Unix pipes. Instead of redirecting the output of ls -l to a file and open that
file for paged viewing with less , you would rather pipe it directly using
ls -l | less , wouldn't you?

A particularly ugly case of the above is the following code, which is highly influenced
by imperative languages, where return is a control construct and strictly necessary:

do x <- someComp
 return x

The above code is an extraordinarily verbose, intensely sugared variant of nothing else
than someComp >>= return . Do you remember the second monad law? The code is
equivalent to simply someComp , which doesn't require any sugar. So you can safely
replace the above code by simply someComp , which is only a single unsugared word.
No superfluous names and no unnecessary binding.

Incomprehensible list comprehensions

[x+1 | x <- xs]

Again, a piece of code, which is highly influenced by imperative programming, where
you manipulate values by referring to them in formulas. Think functionally! Instead of
manipulating values by a single, monolithic formula, use higher order functions:

map (+1) xs

The reason is simple. You can combine these functions arbitrarily without making your
code any harder to understand. Consider the following example, which is supposed to
apply f to all values of the list of lists matrix , which are not 1, and finally add them
together:

sum [f x | vector <- matrix, x <- vector, x /= 1]

Again, using higher order functions and function composition, the code should be much
clearer:

sum . map f . filter (/= 1) . concat $ matrix

10. Backtracking monads
Sometimes the general Monad class is too general. Often you would like to generalize

Understanding Haskell Monads http://ertes.de/articles/monads.html

19 of 27 4/24/09 7:24 AM

features of particular monads like failability or backtracking. In this section, I will
introduce a special monad class, which generalizes the feature of backtracking, i.e.
keeping track of many results.

We have seen that the code for i4throot is the same for both the list monad and the
Maybe monad. Wouldn't it be great to do the same for the isqrt function? Instead of
a particular monad, we would like to generalize it to the following type:

isqrt :: Monad m => Integer -> m Integer

Unfortunately this is impossible. Consider our little isqrt implementation from above
again:

isqrt :: Integer -> Maybe Integer
isqrt x = isqrt' x (0,0)
 where
 isqrt' x (s,r)
 | s > x = Nothing
 | s == x = Just r
 | otherwise = isqrt' x (s + 2*r + 1, r+1)

To generalize the result of this function from Maybe Integer to
Monad m => m Integer , firstly we need to get rid of the Just r . This is easy.
Just replace it by return r . But what about Nothing? What is the general idea of
no result? You will find that the Monad class by itself supports no means to express a
computation, which does not have a result. You have seen monad-specific possibilities
like Nothing in the Maybe monad or [] in the list monad, but there is no
generalization for this. There is also no generalization for many results.

The reason is simple. Not all monads support the notion of a computation, which has
no or many results, so we need to introduce a special class for these backtracking
monads. We call it MonadPlus :

class Monad m => MonadPlus m where
 mzero :: m a
 mplus :: m a -> m a -> m a

This class gives us a generalized computation mzero , which has no result, and a way
to combine the results of two computations, the mplus operator: Here is the instance
for the Maybe monad:

instance MonadPlus Maybe where
 mzero = Nothing

 Nothing `mplus` y = y
 x `mplus` y = x

The MonadPlus instance for Maybe allows us to combine two computations into one,
which returns the result of the first non-Nothing computation:

Just 3 `mplus` Just 4 = Just 3
Nothing `mplus` Just 4 = Just 4
Nothing `mplus` Nothing = Nothing

The following is the instance for the list monad:

instance MonadPlus [] where
 mzero = []
 mplus = (++)

Understanding Haskell Monads http://ertes.de/articles/monads.html

20 of 27 4/24/09 7:24 AM

The MonadPlus instance for the list monad allows us to combine two computations
into one, which returns all results of both computations. It concatenates the results of
both computations. This allows us to generalize the isqrt function, and hence also
the i4throot function from Maybe or the list monad to any backtracking monad (i.e.
any MonadPlus):

isqrt :: MonadPlus m => Integer -> m Integer
isqrt x = isqrt' x (0,0)
 where
 isqrt' x (s,r)
 | s > x = mzero
 | s == x = return r `mplus` return (-r)
 | otherwise = isqrt' x (s + 2*r + 1, r+1)

i4throot :: MonadPlus m => Integer -> m Integer
i4throot x = isqrt x >>= isqrt

This version gives zero or one result in the Maybe monad and all results in the list
monad. As can be seen above, the isqrt function now uses mplus to combine two
computations, one of which returns the positive square root and the other one returns
the negative. The big advantage here is that you have a single piece of code for all
backtracking monads.

11. Library functions for monads
One of the greatest advantages of monads is generalization. Instead of implementing
two things independently, look for common ideas and implement a general concept.
Then make these two things special cases of the general concept. This allows you to
implement a few things at a more general level, which allows you to make a third
thing much more easily, if it is another special case of the concept, because you don't
need to reimplement all the goodies you wrote for the general concept.

Notable examples for the success of this idea are category theory and group theory.
Both define general concepts and corresponding proofs. If an object is found to fit into
these concepts, the respective proofs apply automatically. That saves a lot of hard
work, because you get those proofs for free.

This works for programming, too. But instead of generalizing proofs, we generalize
functionality. This is a very integral concept in Haskell, which is found in very few
other languages. Monads are the most important example of this. Remember the
i4throot function? As you have seen, the codes for both the Maybe version and the
list version were the same, just the types were different. The magic lies in the (>>=) .
It represents the general concept of binding the result of a monadic computation to the
argument of a monadic function:

i4throot x = isqrt x >>= isqrt

A rich library of support functions can be found in the Control.Monad module.
They are general in that they work for every monad. Henk-Jan van Tuyl wrote A tour
of the Haskell Monad functions [4], a comprehensive tour of the various functions with
usage examples. I will document a subset of them here. Some of them are available in
the Prelude as well, but generally you'll want to import the Control.Monad
module. If you implement a new monad, all these support functions become available
for free, because they have been implemented at a general level.

Important note: For most of these monadic support functions, I'm showing you
examples from multiple monads, most notably the list monad. The results, which you
get in the list monad can be quite confusing at first. If you don't grasp them right away,
don't worry. For now, just read on and refer back later.

Understanding Haskell Monads http://ertes.de/articles/monads.html

21 of 27 4/24/09 7:24 AM

mapM and forM: mapping a monadic function over a list

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

forM :: Monad m => [a] -> (a -> m b) -> m [b]
forM_ :: Monad m => [a] -> (a -> m b) -> m ()

These functions are most useful in state monads. They allow you to apply a monadic
function to a list. forM is the same as mapM with the arguments flipped. If you don't
need the results, or if the results are meaningless, you can use mapM_ or forM_ ,
which are the same, but they ignore the result.

import System.Environment

main :: IO ()
main = getArgs >>= mapM_ putStrLn

The getArgs computation returns a list of the command line arguments given to the
program. To print those arguments, each on its own line, the code above uses mapM_ .

The type of mapM may give the impression that in the list monad, it is equivalent to
concatMap . However, it isn't. Have a look at what happens in the list monad:

mapM (\x -> [x-1, x+1]) [10,20,30]

It takes a list of values, applies the monadic function and gives a computation, which
results in the list of values with the function applied. This is the general idea.

Remember, we're in the list monad, which denotes non-determinism. The result of the
computation is [a,b,c] , where a is the result of the computation [10-1, 10+1] ,
likewise b is the result of [20-1, 20+1] and c is the result of [30-1, 30+1] .
There are two results for each of a , b and c , so there are in fact eight results:

[[9,19,29], [9,19,31], [9,21,29], [9,21,31],
 [11,19,29], [11,19,31], [11,21,29], [11,21,31]]

sequence: sequencing a list of computations

sequence :: Monad m => [m a] -> m [a]
sequence_ :: Monad m => [m a] -> m ()

The sequence function simply takes a list of computations and gives a computation,
which results in a list of each of the results of those computations in order:

sequence [c0, c1, ..., cn]
= do r0 <- c0
 r1 <- c1
 ...
 rn <- cn
 return [r0, r1, ..., rn]

Example:

import System.Environment

main :: IO ()
main = sequence [getProgName, getEnv "HOME", getLine]

Understanding Haskell Monads http://ertes.de/articles/monads.html

22 of 27 4/24/09 7:24 AM

 >>= print

The above example uses sequence to run three computations of type IO String .
The results are collected in the result list, which is bound to print . When running
that program, nothing will happen at first, because the last of the three computations
requests an input line from the user. After that, the resulting list of three strings is
printed. The code is equivalent to:

import System.Environment

main :: IO ()
main = do
 results <- do
 a <- getProgName
 b <- getEnv "HOME"
 c <- getLine
 return [a,b,c]

 print results

Although this function is easily comprehensible for identity-like monads like State s
or IO , it can give quite bizarre-looking results for monads, which add structure. Let's
see, what sequence does in the list monad:

sequence [[1,2], [4,5], [6], [7,9]]

This gives the following result list:

[[1,4,6,7], [1,4,6,9], [1,5,6,7], [1,5,6,9],
 [2,4,6,7], [2,4,6,9], [2,5,6,7], [2,5,6,9]]

This may look strange at first, but reconsidering the nature of the list monad, this
should make perfect sense again. Just consider that sequence takes a list of
computations and gives a computation, which results in a list of the respective results.
There are four computations, namely [1,2] , [4,5] , [6] and [7,9] .

If we name the results of those computations a , b , c and d respectively, then the
result is [a,b,c,d] . a represents the values 1 and 2, as it is the result of the
computation [1,2] . b represents two results as well, c represents a single result and
d represents two results again. So the result list [a,b,c,d] represents eight results.
If you pay attention to the type of sequence , this makes sense, because the result is
returned in the list monad in this case, so there is not just a list, but a list of lists, i.e. a
non-deterministic list.

The code above is equivalent to the following:

do a <- [1,2]
 b <- [4,5]
 c <- [6]
 d <- [7,9]
 return [a,b,c,d]

forever: sequencing a computation infinitely

forever :: Monad m => m a -> m b

This function takes a computation c and turns it into c >> c >> ... , so it gives a
computation, which runs forever (unless there is an implicit stop in the binding

Understanding Haskell Monads http://ertes.de/articles/monads.html

23 of 27 4/24/09 7:24 AM

function). This function is almost only useful in state monads:

main :: IO ()
main = forever $ putStrLn "Hello!"

Although in almost all cases, the resulting computation really runs forever, there are a
few cases, where forever gives a finite computation. Notable examples are
forever [] and forever Nothing . The reason is simple:

forever Nothing = Nothing >> forever Nothing

You should know from the definition of binding for Maybe , that if the source
computation has no result, then the consuming function isn't called at all, so this
computation gives Nothing right away. The same holds for the list version.

replicateM: sequencing a computation finitely

replicateM :: Monad m => Int -> m a -> m [a]
replicateM_ :: Monad m => Int -> m a -> m ()

These two functions are special cases of sequence . They take a count n and a
computation c and produce a computation, which runs c exactly n times.
replicateM returns the results, replicateM_ doesn't. The latter function is almost
only useful in state monads.

main :: IO ()
main = replicateM 3 getLine >>= mapM_ putStrLn

The above code reads three lines and then prints them in order.

This function also makes sense in the list monad. Have a look at the following
example:

replicateM 3 [0,1]

The result of this computation is [a,b,c] , where all of a , b and c are the result of
the same computation [0,1] (because we replicate that computation three times). This
gives a total of eight results (key word: non-determinism):

[[0,0,0], [0,0,1], [0,1,0], [0,1,1],
 [1,0,0], [1,0,1], [1,1,0], [1,1,1]]

when and unless: conditional skipping of a computation

when :: Monad m => Bool -> m () -> m ()
unless :: Monad m => Bool -> m () -> m ()

The computation when True c is the same as c , whereas the computation
when False c is the same as return () . The unless function is the reverse.

import System.Exit

main :: IO ()
main =
 forever $ do
 line <- getLine

Understanding Haskell Monads http://ertes.de/articles/monads.html

24 of 27 4/24/09 7:24 AM

 when (line == "quit") exitSuccess
 putStrLn line

The above code repeats the following computation forever: Read a line, if that line is
equal to "quit", then throw an exitSuccess exception (which simply terminates the
program), then finally print the line.

liftM: applying a non-monadic function to the result

liftM :: Monad m => (a -> b) -> m a -> m b

The liftM function can be used to turn a computation c into a computation, for
which a certain non-monadic function is applied to the result. So the computation
liftM f c is the same as c , but the function f is applied to its result. One says, the
function f is lifted or promoted to the monad.

main :: IO ()
main = do
 x <- liftM read getLine
 print (x+1)

In the above code, the computation liftM read getLine is the same as getLine ,
besides that the read function is applied to its result, so you don't have to apply
read to x .

liftM (^2) [1,2,3]

For lists the liftM function is equivalent to map . So the above code results in
[1,4,9] . This should be obvious, as the list monad adds an 'arbitrarily many results'
structure to the result, hence lifting a function f means applying it to each result.

liftM2 :: Monad m => (a1 -> a2 -> b) -> m a1 -> m a2 -> m b

Similarly to the liftM function, the liftM2 function takes a binary function f and
two computations. It gives a computation, which results in the result of the two
individual computations passed to f . Likewise there are functions liftM3 , liftM4
and liftM5 .

12. Monad transformers
This final section is about combining monads. The motivation is simple. You have
implicit state, which you want to use while interacting with the outside world through
IO , or you have a stateful computation and want it to be non-deterministic (including
its state). You are seeking monad transformers.

A monad transformer for (or to) a particular monad is usually written with a T
appended to its name. So the transformer version for State is written StateT . The
difference between State s and StateT s is: The former is a monad right away,
while the latter needs a second monad as a parameter to become a monad:

data State s a
data StateT s m a

Where m is a monad, StateT s m is also a monad. StateT s m is a version of
State s , which returns a computation in the m monad instead of a result. In other
words, it transforms a State computation into an m computation. Here is an example:

Understanding Haskell Monads http://ertes.de/articles/monads.html

25 of 27 4/24/09 7:24 AM

incrReturn :: StateT Integer Maybe Integer
incrReturn = modify (+1) >> get

If called with the state 3, this code would increment the state to 4, but instead of
resulting in 4, it results in Just 4 , so it gives a computation in the Maybe monad
instead of a direct result. You cannot use the usual runState , evalState or
execState functions here. Instead there are variants of them specific to the StateT
transformer:

runStateT :: Monad m => StateT s m a -> s -> m (a, s)
evalStateT :: Monad m => StateT s m a -> s -> m a
execStateT :: Monad m => StateT s m a -> s -> m s

However, on a first glance, there seems to be little difference between State s and
StateT s m , other than that the latter returns its result in the m monad. This
would be pretty useless. The real power of monad transformers comes with the lift
function, which allows you to encode a computation in the inner monad. Have a look
at this simple example:

incrAndPrint :: StateT Integer IO ()
incrAndPrint = do
 modify (+1)
 x <- get
 lift (print x)

As you see, the lift function is used to encode an IO computation just right in the
stateful computation, hence you have combined the monads State Integer and IO .
This is a great feature, for example to carry application state around implicitly:

data AppConfig = ...

myApp :: StateT AppConfig IO ()
myApp = ...

main :: IO ()
main = do
 cfg <- getAppConfig
 evalStateT myApp cfg

The idea here is that you set up the application state through the getAppConfig
computation, which may take into account command line arguments, configuration files
and environment variables. Then you run the actual application computation myApp
with this configuration as implicit state. You could go further giving the
StateT AppConfig IO monad a convenient synonym:

type AppIO = StateT AppConfig IO

myApp :: AppIO ()

This is just a State transformer. Many monads can act as transformers and have a
corresponding types. For example there are the Reader and Writer monads, which I
don't discuss here. For them, there exist transformer variants ReaderT and WriterT .
There is also the MaybeT transformer variant of Maybe (which can be found in the
MaybeT package [3]). The list monad has a transformer variant, too: the LogicT
transformer (found in the LogicT package [2]).

However, there is one notable exception: the IO monad. Above in this tutorial you
have learned that there is no means to run an IO computation, but transforming
monads needs just that. That means, even if there were an IO transformer, let's call it

Understanding Haskell Monads http://ertes.de/articles/monads.html

26 of 27 4/24/09 7:24 AM

[1] Haskell homepage

[2] LogicT package

[3] MaybeT package

[4] A tour of the Haskell Monad functions

[5] Abstraction, intuition, and the "monad tutorial fallacy"

IOT , you could only construct computations in the IOT m monad, but you could
never run them. So it makes no sense to have an IO transformer.

As a side note, the identity monad acts as an identity with respect to monad
transformation. That means, if MT is the transformer variant of the M monad, then
MT Identity is functionally equivalent to M . For example, StateT s Identity is
functionally equivalent to State s , in that it adds no special properties to State s .
Some people even proposed that we define all monads in terms of their respective
transformers and the identity monad.

A. Contact
You can contact me through email (es@ertes.de). If you prefer live chats, you can also
reach me in the #haskell channel on irc.freenode.net. My nickname there is
mm_freak. If you are interested in more from me, visit my blog, but be prepared to find
informal stuff there, too. =)

B. Update history
Version 1.00 (2008-12-26): Initial revision.
Version 1.01 (2009-02-01): Corrected code in syntactic sugar section, which
didn't compile. Thanks to Peter Hercek for reporting. Added a reference to A
tour of the Haskell Monad functions [4] and to Brent Yorgey's Abstraction,
intuition, and the "monad tutorial fallacy" [5]. A few minor style modifications.

References
– The homepage of the Haskell language.

– A package for logic programming in backtracking monads
(contains a transformer variant of the list monad).

– The transformer variant MaybeT of Maybe, unfortunately
missing in the monad transformer library.

– A comprehensive tour of the library
functions for monads, together with usage examples.

– Brent Yorgey's view on
why writing yet another monad tutorial won't help newcomers a lot. Very
interesting.

2008-12-26, Ertugrul Söylemez

Understanding Haskell Monads http://ertes.de/articles/monads.html

27 of 27 4/24/09 7:24 AM

