Well I figured out that I should be using the State monad, but it seems not to be behaving like most of the tutorials on the web. Did the syntax change? ....

type SankeyState = (P2,CircleFrac,Double) 
type SankeyPic = (Trail R2, Trail R2)

type Sankey = State SankeyState SankeyPic

saBlank :: Sankey
saBlank = return (mempty, mempty)

saVia :: Double -> Sankey
saVia l = state (
  \(p,a,w) -> 
    ( 
      ( hrule l    # translateX 0.5 # translateY (w/2)  # rotate a
      , hrule (-l) # translateX 0.5 # translateY (-w/2) # rotate a
      ) 
      , (p .+^ (unitX # scale l # rotate a),a,w) 
    )
  ) 

saTo :: Sankey
saTo = state ( 
  \(p,a,w) ->  
    ( 
      ( hrule w    # translateX (w/2) # translateY (w/2)  # rotate (-1/8::CircleFrac) #  scale (0.7071) # rotate a # translate (origin .-. p)
      , hrule (-w) # translateX (w/2) # translateY (-w/2) # rotate  (1/8::CircleFrac) #  scale (0.7071) # rotate a # translate (origin .-. p)
      )
    , (p,a,w)
    )
  )

x :: SankeyPic
x = evalState ( saTo )              (origin, 0, 5) -- works and looks nice
--x = evalState ( saVia 10 )          (origin, 0, 5) -- works but not much to see
--x = evalState ( saVia 10 >>= saTo ) (origin, 0, 5) -- barfs with something unintelligible

pic3 = strokeT ( close ( fst x <> snd x)) # fc red

The unintelligible bit is:

    Couldn't match expected type `SankeyPic
                                  -> StateT SankeyState Data.Functor.Identity.Identity SankeyPic'
                with actual type `Sankey'
    In the second argument of `(>>=)', namely `saTo'
    In the first argument of `evalState', namely `(saVia 10 >>= saTo)'
    In the expression: evalState (saVia 10 >>= saTo) (origin, 0, 5)

TIA,
Adrian.




On 31 May 2013 21:16, Adrian May <adrian.alexander.may@gmail.com> wrote:
Hi all,

Take a look at this disaster area, or just scroll down to where I come to the point...

=======================

type SankeyBrain = (P2,CircleFrac,Double) -- like a turtle plus width
data SankeyWorld tb = SankeyWorld ((Trail R2,Trail R2),tb) --outgoing and returning trails, plus brain

emptySankey :: SankeyWorld SankeyBrain
emptySankey = SankeyWorld ((mempty,mempty),(origin,0,0))

sankeyFrom:: CircleFrac -> Double -> SankeyWorld SankeyBrain
sankeyFrom a w = SankeyWorld ((mempty,mempty),(p2 (0,0),a,w)) -- kick off with an angle and width

instance Monad SankeyWorld where
  return a = SankeyWorld ((mempty,mempty), a) --never use this
  (SankeyWorld l) >>= f = let (SankeyWorld r) = f (snd l) in -- out = left then right, return = right then left
SankeyWorld ( (((fst.fst) l <> (fst.fst) r),((snd.fst) r <> (snd.fst) l)),(snd r)   )

sankeyVia :: Double -> SankeyBrain -> SankeyWorld SankeyBrain
sankeyVia d (p,a,w) = 
  let -- draw parallel lines and move them into place
    l1 = hrule 1 # scaleX d    # translateX (d/2) # translateY (w/2)  # rotate a # translate (origin .-. p) 
    l2 = hrule 1 # scaleX (-d) # translateX (d/2) # translateY (-w/2) # rotate a # translate (origin .-. p) 
  in SankeyWorld ( ( l1 , l2 ) , ( p .+^ (unitX # scale d # rotate a), a, w) )

sankeyTo :: SankeyBrain -> SankeyWorld SankeyBrain
sankeyTo (p,a,w) = SankeyWorld ( --arrow at the end of the flow
  ( hrule w    # translateX (w/2) # translateY (w/2)  # rotate (-1/8::CircleFrac) #  scale (0.7071) # rotate a # translate (origin .-. p)
  , hrule (-w) # translateX (w/2) # translateY (-w/2) # rotate  (1/8::CircleFrac) #  scale (0.7071) # rotate a # translate (origin .-. p)
  ), (p,a,w)) 


sankeyTurn r a' (p,a,w) = let (outr, inr, qu) = if a'>=0 then (r, -w-r, -0.25::CircleFrac) else (-w-r, r, 0.25::CircleFrac) in
  SankeyWorld ( -- turn a corner with nice round edges
( arc' outr (a+qu) (a+a'+qu)  # translate (unitY # rotate (a+a' )# scale w)
  , arc' inr  (a+a'+qu) (a+qu) # translate (unitY # rotate (a+a' )# scale w)
  ),(p,a+a',w))

-- bump...
sankeySplit :: [(Double, SankeyBrain -> SankeyWorld SankeyBrain)] -> SankeyBrain -> SankeyWorld SankeyBrain
sankeySplit fs (p,a,w) = let (placed,_) = ( foldl ( \(l,t) -> \(i,c) -> ( l++[( ( p .+^ (unitY # rotate a # scale (((t+i/2)-0.5)*w)), a, w*i) ,c )],t+i) ) ([],0) fs ) in 
foldl (\(SankeyWorld ((lo,lr),lb)) -> \(SankeyWorld ((ro,rr),rb)) -> SankeyWorld ( ( lo <> ro , rr <> lr ), rb )  ) emptySankey $ map (\(b,f)-> f b) placed

SankeyWorld ((turtb,turta),_) = 
{- This is the bit that fails:
sankeyFrom 0 5 >>= sankeyVia 5 >>= 
sankeySplit 
[ (0.3, sankeyVia 10 )
, (0.7, sankeyVia 15 )
]
-}
sankeyFrom 0 5 >>= sankeyVia 5 >>= sankeyTurn 1 (-0.125) >>= sankeyVia 10 >>= sankeyTurn 1 (0.25) >>= sankeyTo -- >>= turn 0.25 >>= forward 10 >>= turn 0.25 >>= forward 20 >>= turn 0.25 >>= forward 10

pic3 = (strokeT (close ( turtb<>turta) )) # fc red

======================

The idea is that SankeyWorld is a monad containing two trails (outbound and inbound) and a turtle-like state. I bind it onto functions like SankeyBrain -> SankeyWorld, whereby >>= passes the state across. >>= draws the left hand outward trail, then the right hand outward trail, then the right hand inward trail, then the left hand inward trail, so it all makes a nice polygon and I can colour it in. 

sankeyFrom angle width is already a monad, sankeyVia length is such a function and I could have sankeyTo contain () in place of the brain (i.e. state) cos you're not supposed to continue from it.

The tricky bit is splitting the flow. I want a function that takes the brain, splits the width according to named shares and shoves each share into a function SankeyBrain -> SankeyWorld that might have lots more stages and splits downwind.

It was all going fine until I discovered that if I can say m >>= f, then I can't say f >>= f. So I don't know how to write the bits after the split. Silly me. But what should I do instead to model Sankey diagrams splitting? Is MonadPlus the trick? If so, am I gonna have to make [SankeyWorld] a monad as well?

TIA,
Adrian.

PS: I rarely have any use for the polymorphism of the parameter to Monad. In this case, it's a SankeyBrain, end of story. Is there a simpler kind of monad that doesn't throw this complication at me?