Why can’t | get a stack trace?

Simon Marlow



Motivation

Simon Marlow - A 2011 - Pu
After bashing my head against this problem on and off for several years, | think | finally understand how to track call stacks properly in a
lazy functional language. If this pans out, we'll get backiraces in GHCI and more accurate profiling.

%1 - Comment - Hang out - Share

£33 COMmments

Gabnel Dus Heis - An upcoming ICFP paper?

Debasmh Ghnah - Please give here a shout in case you decide to document it in a paper or a blog post.
+7

, Manuel Chakravarty - That would be awesome!

Aug 9, 2011 +1

P

AUg J, £U

ﬂ Diavid Leuschner - Great news! We're already looking forward to testing the new profiler! :-)

[ﬁ Thomas Schilling - So, that would only work in GHCI? Will it have a performance impact?

A ; g /__'.'.




Background

A stack trace (or lexical call context) contains
a lot of information, often enough to
diagnose a bug.

* Inanimperative language, where every
function call pushes a stack frame, the
execution stack contains enough information
to reconstruct the lexical call context.

e The same isn’t true in Haskell, for various
reasons...



1. Tail Call Optimisation

— TCO means that important information about the
call chain is not retained on the stack

— But TCO is essential, we can’t just turn it off

main = do Execution stack:
[x] <- getArgs main
print (f (read x)) g

:: Int -> Int

:: Int -> Int

X = 100 div x



2. Lazy evaluation
— Lazy evaluation results in an execution stack that
looks nothing like the lexical call stack.

— When a computation is suspended (a thunk) we
should capture the call stack and store it with the

thunk.

Execution stack:
main

main = do
[x] <- fmap (fmap read) getArgs
print Chead (f x))

print
g

fx=mapg [ x .. x+10 ]

g :: Int -> Int
g x = 100 div x




3. Transformation and optimisation

we do not want the transformations done by

GHC’s optimiser to lose information or mangle
the call stack.

we’ve already established that strictness analysis
should not distort the stack.

But even inlining a function will lose information
if we aren’t careful.



4. Even if we fix 1—3, high-level abstractions
like monads result in strange stacks

— examples coming...

 We need a framework for thinking about the
Issues.



A construct for pushing on the stack

 “push label L on the stack while evaluating E”

e thisis a construct of the source language and the
intermediate language (Core)

 Compiler can add these automatically, or the user can add
them

 Think {-# SCC .. #-} in GHC

 We get to choose how detailed we want to be:
— exported functions only
— top-level functions only
— all functions (good for profiling)
— call sites (good for debugging)
— all sub-expressions (fine-grained debugging or profiling)



e Define stacks:

type Stack = [Label]

push :: Label -> Stack -> Stack
call :: Stack -> Stack -> Stack




Define stacks:

type Stack = [Label]
push :: Label -> Stack -> Stack
call :: Stack -> Stack -> Stack

stack at the call site




Define stacks:

type Stack = [Label]
push :: Label -> Stack -> Stack
call :: Sstack -> Sstack -> Stack

stack of the
function

stack at the call site




Define stacks:

type Stack = [Label]
push :: Label -> Stack -> Stack
call :: Sstack -> Sstack -> Stack

stack of the
function

stack at the call site

stack for the call




Executable semantics

eval

eval
eval

eval

eval

:: Stack -> Expr -> E (Stack,Expr)

stk (EInt 1) return (stk, EInt 1)
stk (ELam x e) return (stk, ELam x e)

stk (EPush 1 e) eval (push 1 stk) e

stk (ELet (x,el) e2) = do

insertHeap x (stk,el)
eval stk e2

eval

stk (EApp f x) = do

(lam_stk, ELam y e) <- eval stk f
eval lam_stk (subst y x e)




Executable semantics

eval

eval
eval

eval

eval

current stack

:: Stack -> Expr -> E (Stack,Expr)-

stk (EInt 1) return (stk, EInt 1)
stk (ELam x e) return (stk, ELam x e)

stk (EPush 1 e) eval (push 1 stk) e

stk (ELet (x,el) e2) = do

insertHeap x (stk,el)
eval stk e2

eval

stk (EApp f x) = do

(lam_stk, ELam y e) <- eval stk f
eval lam_stk (subst y x e)




Executable semantics

eval :: Stack -> Expr -> E (Stack,Expr)

eval stk (EInt 1) return (st Eiséswuémonad
eval stk (ELam x e) return (stk, ELam containingthe Heap:
a mapping from Var

eval stk (EPush 1 e) = eval (push 1 stk) to (Stack,Expr)

eval stk (ELet (x,el) e2) = do
insertHeap x (stk,el)
eval stk e2

eval stk (EApp f x) = do
(lam_stk, ELam y e) <- eval stk f
eval lam_stk (subst y x e)




Executable semantics

eval :: Stack -> Expr -> E (Stack,Expr)

eval stk (EInt 1) return (stk, EInt 1)

Values are
eval stk (ELam x e) return (stk, ELam x e

straightforward

eval stk (EPush 1 e) eval (push 1 stk) e

eval stk (ELet (x,el) e2) = do
insertHeap x (stk,el)
eval stk e2

eval stk (EApp f x) = do
(lam_stk, ELam y e) <- eval stk f
eval lam_stk (subst y x e)




Executable semantics

eval :: Stack -> Expr -> E (Stack,Expr)

eval stk (EInt 1) return (stk, EInt 1)
eval stk (ELam x e) return (stk, ELam x e)

eval stk (EPush 1 e) eval (push 1 stk) e

eval stk (ELet (x,el) e2) = do
insertHeap x (stk,el)
eval stk e2

eval stk (EApp f x) = do
(lam_stk, ELam y e) <- eval stk f
eval lam_stk (subst y x e)

push L on the
stack, evaluate
the body

~




Executable semantics

eval :: Stack -> Expr -> E (Stack,Expr)

eval stk (EInt 1) return (stk, EInt 1)
eval stk (ELam x e) return (stk, ELam x e)

eval stk (EPush 1 e) eval (push 1 stk) e
eval stk (ELet (x,el) e2) = do

insertHeap x (stk,el)
eval stk e2 ‘~§§==i5;:‘~\‘
suspend the R

eval stk (EApp f x) = do
(lam_stk, ELam y e) <- eval
eval lam_stk (subst y x e)

computation el on the
heap, capture the
current stack




Executable semantics

eval

eval
eval

eval

eval

:: Stack -> Expr -> E (Stack,Expr)

stk (EInt 1) return (stk, EInt 1)
stk (ELam x e) return (stk, ELam x e)

stk (EPush 1 e) eval (push 1 stk) e

stk (ELet (x,el) e2) = do

insertHeap x (stk,el)
eval stk e2

eval

stk (EApp f x) = do

(lam_stk, ELam y e) <- eval stk f
eval lam_stk (subst y x e)

Application continues
with the stack returned
by evaluating the lambda



Executable semantics (variables)

eval stk (Evar x) = do
r <- lookupHeap x
case r of
(stk', EInt 1) -> return (stk', EInt 1)
(stk', ELam y e) -> return (call stk stk’, ELam y e)

(stk',e) -> do
deleteHeap X
(stkv, v) <- eval stk' e
insertHeap x (stkv,v)

eval stk (Evar x)

Here’s where we are
“calling” a function




Given this semantics, define push & call

* The problem now is to find suitable definitions
of push and call that

— Behave like a call stack
— Have nice properties:

* transformation-friendly
 predictable/robust
* implementable



Lazy evaluation is dealt with

* Lazy evaluation is dealt eval stk (ELet (x,el) e2) = do

with by insertHeap x (stk,el)
eval stk e2

— capturing the current

o QWL RWERS TN ol olo Ic Il eval stk (Evar x) = do
r <- lookupHeap X

computation as a thunk

case r of
in the heap
— temporarily restoring the (stk'.e) -> do
stack when the thunk is deleteHeap x
evaluated (stkv, v) <- eval stk' e
: : insertHeap x (stkv,v)
* Nothing controversial at eval stk (Evar x)

all —we just need a
mechanism for capturing
and restoring the stack.



Tail calls are dealt with

* The semantics says nothing about tail calls —
push always pushes on the stack.

* Even if the underlying execution model is
doing TCO, the call stack simulation must not.



Examples

f = Ax. push “f” x+x

main = Ax. push “main”
lety =11n f y

 The heap is initialised with the top-level bindings (give
each the stack <CAF>)

 When we get to (f y), current stack is <main>

* fis already evaluated

* call <main><CAF> = <main>
: call Sapp Slam = Sapp

e eval <main> (push f y+y)

e eval <main,t> (y+y)

e atthe +, the current stack is <main,f>




Use the call-site stack?

call sapp slam = sapp

* Previous example suggests this might be a
good choice?

e After all, this gives exactly the call stack you
would get in a strict language



But we have to be careful

e |f instead of this: f = Ax. push “f” x+x

main = AX. push “main”
lety =11n f y

* We wrote this: f = push “f” (Ax

. X+X)

main = AX. push “main”
lety =11n fy

e Now it doesn’t work so well: the “t” label is lost.

* |n this semantics, the scope of push does not
extend into lambdas



Just label all the lambdas?

* |dea: make the compiler label all the lambdas
automatically

* e.g. the compiler inserts a push inside any
lambda:

f = push “f” (Ax . push “f1” x+x)

main = Ax. push “main”
lety =11n fy

* Now we get a useful stack again: <main,f1>



Some properties

 Adding an extra binding doesn’t change the
stack

f = push “f” (Ax . push “f1” x+x)

g = push “g” f

main = Ax. push “main”
lety =11n g vy

4

* In this semantics ‘push L x ==

e arguably useful: the stack is robust with
respect to this transformation (by the
compiler or user)



But...

* eta-expansion changes the stack

f push “f” (Ax . push “fl1l” x+x)

g = Ax . push “g” f x

main = AX. push “main”
lety =11n gy

* Now the stack at the + will be <main,g,f>



Concrete example

* When we tried this for real, we found that in
functions like

h=*Ff.g

* h does not appear on the stack, although in

h x=(f . g) x

 now it does. This is surprising and
undesirable.



Worse...

e Let’'s make a state monad:

newtype M s a =M { unM :: s -> (s,a) }

instance Monad (M s) where
(Mm) >k =M©$ As -> case m s of
(s',a) -> unM (k a) s'
return a =M $ As -> (s,a)

errorM :: String -> M s a Suppose we want the
errorm s =M $ A_ -> error s stack when error is

called, for debugging

runM :: M s a -> S -> a
runM (M m) s = case m s of (_,a) -> a




Using a monad

* Simple example:

main = print (runM (bar ["a","b"]) "state")

bar :: [String] -> M s [String]
bar xs = mapM foo xs

foo :: String -> M s String
foo x = errorM x




Using a monad

* Simple example:

main = print (runM (bar ["a","b"]) "state")

bar :: [String] -> M s [String]
bar xs = mapM foo xs

foo :: String -> M s String
foo x = errorM x

* We are looking for a stack like
<main,runM,bar,mapM,foo,errorM>



Using a monad

* Simple example:

main = print (runM (bar ["a","b"]) "state")

bar :: [String] -> M s [String]
bar xs = mapM foo xs

foo :: String -> M s String
foo x = errorM x

* We are looking for a stack like
<main,runM,bar,mapM,foo,errorM>

e Stack we get: <runM>



Why?

* Take a typical monadic function:

* Desuraging gives
f=p>>q

* Adding push:

_F — push u_Fu (p >> q)

* Expanding out (>>):

f = push “f” (As -> case p s of (a,s’) -> b s’)

e recallthatpushL(Ax.e)=Ax.e



The 10 monad

* In GHC the I0 monad is defined like the state
monad given earlier.

 We found that with this stack semantics, we
get no useful stacks for I0 monad code at all.

* When profiling, all the costs were attributed
to main.



call S50 Siam = Saoo?

* We recovered the non-lazy non-TCO call stack,
which is the stack you would get in a strict
functional language.

 Butitisn’t good enough.

— at least when used with monads or other high-
level functional abstractions



Can we find a better semantics?

* call S0, S = 7

* non-starter: call S,/ Si., = Span,

— ignores the calling context

— gives a purely lexical stack, not a call stack
— (possibly useful for flat profiling though)

* Clearly we want to take into account both S, |
and S, somehow.



The definitions | want to use

call Sapp Slam = Sapp ++ Slam’
where (Spre, Sapp’, Slam’) = commonPrefix Sapp Slam

push 1 s | 1 elem s dropwhile (/= 1) s
| otherwise 1 : s

* Behaves nicely with inlining:

— “common prefix” is intended to capture the call
stack up to the point where the function was

defined

 useful for profiling/debugging: the top-of-
stack label is always correct, we just truncate

the stack on recursion.



Status

e GHC 7.4.1 has a new implementation of
profiling using push

* +RTS —xc prints the call stack when an
exception is raised

* Programmatic access to the call stack:



Status

e GHC 7.4.1 has a new implementation of
profiling using push

* +RTS —xc prints the call stack when an
exception is raised

* Programmatic access to the call stack:

-- | Tike 'trace', but additionally prints a call
-- stack if one is available.
traceStack :: String -> a -> a

-- | Tike ‘error’, but includes a call stack
errorwithStackTrace :: String -> a







Programmatic access to stack trace

 The GHC.Stack module provides runtime
access to the stack trace

* On top of which is built this:

* e.g. now when GHC panics it emits a stack
trace (if it was compiled with profiling)



Programmatic access to stack trace

 The GHC.Stack module provides runtime
access to the stack trace

* On top of which is built this:

-- | Tike 'trace', but additionally prints a call stack if one is
-- available.

traceStack :: String -> a -> a

* e.g. now when GHC panics it emits a stack
trace (if it was compiled with profiling)



Properties

* This semantics has some nice properties.

push L X => X

push L (Ax . e) => AX . e
push L (C x1 .. xn) => C x1 ..

Tlet x = Ay . e in push L e'
=> push (let x = Ay . e in e')

push L (let x = e 1n e')
=> let x = push L e in push L e




Properties

* This semantics has some nice properig

since the stack
attached to a
lambda is
irrelevant (except
for heap profiling)

push L X => X

push L (Ax . e) => AX . e
push L (C x1 .. xn) => C x1 ..

Tlet x = Ay . e in push L e'
=> push (let x = Ay . e in e')

push L (let x = e 1n e')
=> let x = push L e in push L e



Properties

* This semantics has some nice properties.

push L X

push L (Ax .

push L (C x1 ..

Tet x = Ay .
=> push

push L (let
=> let x

=> X
e) => AX . e
xn) => C x1 ..
e in push L e'

(let x = Ay . e in e')

= e in e')
push L e in push L e

O(1) change to cost
attribution, no
change to profile
shape




Properties

* This semantics has some nice properties.

push L X => X

push L (Ax . e) => AX . e
push L (C x1 .. xn) => C x1 ..

Tlet x = Ay . e in push L e'
=> push (let x = Ay . e in e') Note ife is a
value, the push
push L (let x = e in e") L will disappear
=> let x = push L e in pus <




Inlining

* We expect to be able to substitute a function’s
definition for its name without affecting the

stack. e.g.
f = Ax . push “f1” x+x

main = AX. push “main”
lety =11n fy

e should be the same as

main = AXx. push “main”

let y =1 1in
(AX . push “fl1l” x+x) vy

* and indeed it is in this semantics.
— (inlining functions is crucial for optimisation in GHC)



Think about what properties we want

 Push inside lambda:

push L (Ax. e) == AX. push L e

— (recall that the previous semantics allowed
dropping the push here)

— This will give us a push that scopes over the inside

of lambdas, not just outside.

e which will in turn give us that stacks are robust to eta-
expansion/contraction



What does it take to make this true?

e Consider

let f = push “f” Ax . e let f = Ax . push “f” e

in ... f ... in ... f ...

* |f we work through the details, we find that
we need

call S (push L S¢) == push L (call S Sg)

* Not difficult: e.g. ke flip (++), but

useful to define it
type Stack = [Label] this way

push = (:)

call = foldr push



Recursion?

 We do want finite stacks
— the mutator is using tail recursion

* Simplest approach: push is a no-op if the label
is already on the stack somewhere:

push T s | 1 "elem s

| otherwise

* still satisfies the push-inside-lambda property

* but: not so good for profiling or debugging

— the label on top of the stack is not necessarily
where the program counter is



Inlining of functions

* (remember, allowing inlining is crucial)
* Consider

let g = Ax.e 1in

et @ = sush T @ let £ = push “f” Ax.e 1in

fy vy

 Work through the details, and we need that

* interesting: calling a function whose stack is a

prefix of the current stack should not change
the stack.




Break out the proof tools



Break out the proof tools

e QuickCheck.



Break out the proof tools

e QuickCheck.

prop_append2 = forAllShrink stacks shrinkstack $ \s ->
forAll Main.labels $ \x ->
call (s push” x) s == s "push x

*** Failed! Falsifiable (after 8 tests and 2 shrinks):
(E :> "e") :> Ilbll
llell




Break out the proof tools

e QuickCheck.

prop_append2 = forAllShrink stacks shrinkstack $ \s ->
forAll Main.labels $ \x ->
call (s push” x) s == s "push x

*** Failed! Falsifiable (after 8 tests and 2 shrinks):
(E :> "e") :> Ilbll
llell

e but this corresponds to
something very
strange:



Break out the proof tools

e QuickCheck.

prop_append2 = forAllShrink stacks shrinkstack $ \s ->
forAll Main.labels $ \x ->
call (s push” x) s == s "push x

**% Failed! Falsifiable (after 8 tests and 2 shrinks):
(E :> "e") :> llbll
llell

e but this corresponds to
something very T
strange:

push “f” g 1in




A more restricted property

* This is a limited form of the real property we
need for inlining

* The push-inside-lambda property behaves

similarly: we need to restrict the use of duplicate
labels to make it go through.



A more restricted property

prop_stack2a = forAllshrink stacks shrinkstack $ \s ->
forAll Main.labels $§ \x ->
X elemstack s ||
call (s push x) s == s "push x

*Main> quickCheck prop_stack2a
+++ OK, passed 100 tests.

* This is a limited form of the real property we
need for inlining

* The push-inside-lambda property behaves

similarly: we need to restrict the use of duplicate
labels to make it go through.



