
The Monad.Reader

alone, GHCi would choose the leftmost subexpression that begins and ends on
that line, which is not the one we want. Therefore, the column number is needed
to disambiguate. We have chosen the starting column of the expression, but any
column inside its span will do.

Now we can run the program and wait for the breakpoint. There are no special
commands to invoke, we just do it in the normal way:

*Main> main

The program behaves as usual, and we are prompted for input:

Enter a term to search for: C

After a short amount of time the breakpoint is reached:

Stopped at Main.hs:16:20-33
_result :: Maybe String = _
rest :: [Tag] = _
15 searchTerm term (TagText text : rest)
16 | term == text = searchDef rest
17 | otherwise = searchTerm term rest

Note that, in addition to _result, the variable rest is bound at the prompt,
because it is free in the current breakpoint expression.

At this point we know that the search term has been located, and from the be-
haviour of the program, we know that the wrong definition is eventually returned.
To help us understand the cause of the problem, we want to know what tags ap-
pear just after the search term, up until the erroneous definition is found (the next
TagText token). We could print out the value of rest, but as a precaution, we
first check its length:

[Main.hs:16:20-33] *Main> length rest
302250

Clearly it is far too big to print the whole list. However, we only really want to
view a prefix of the list, up until the next TagText. We can find out exactly how
big that prefix is:

[Main.hs:16:20-33] *Main> length (fst (break (~== TagText "") rest))
6

This expression splits rest into two parts – (1) everything before the first TagText
token, and (2) everything else – and it returns the length of the first part. It uses
the partial match operator ~= from the TagSoup library, along with fst, break
and length from the Prelude. Fortunately the prefix is short, so we can safely
print it out:

8


