
HASKELL QUICK REFERENCE
IEEE VisWeek Tutorial 2008

Comments

-- -- end-of-line comment

{- -} {- multi-line comment {-with nesting-} -}

{-# #-} {-# PRAGMA usually a helpful hint to the compiler #-}

Identifier names

eat3Chars functions, variables and type variables start with lowercase

Double concrete typenames / constructors start with uppercase

a typically, variable names in argument positions are short

foo_Bar’34baz underscores _, primes ‘, digits, mixed case, are permitted

a ++ b symbols are infix operator names, ++ takes two arguments

a :-: b symbols starting with a colon : are infix constructor names

(++) a b an infix symbol can be used prefix, by enclosing in parens

a `foo` b a prefix name can be used infix, by enclosing in backquotes

Strings

“hello world” strings use double-quotes

‘c’ character constants use single quotes

Lists have two constructors, empty [], and cons (:) which joins one elem to a list

(x : xs) a list with x at the front, xs is the rest of the list

(x : y : z : []) a list of three things

[x, y, z] square brackets with commas are sugar for (x:y:z:[])

[2 .. 15] list containing a numeric range

[2, 4 .. 16] list containing a stepped numeric range

[40, 39 .. 0] ranges can go down as well as up

Tuples

(x, y) a paired value - in round parentheses with commas

(x, y, z) a triple of values

Numbers

42 value of any number type: Int, Integer, Float, Double, etc

42.0 value of any fractional type: Float, Double, Rational, Complex

1.2e3 scientific notation (= 1.2 x 10^3)

Equals symbols

= single = is a definition of a value

== double == is a comparison operator returning a Boolean

Lambda notation

(\x-> foo) backslash is a poor ASCII version of the lambda symbol

-> ASCII version of a right arrow (used in lambdas, case
discrimination, and types of functions)

Layout

defn
 where defn2

Indentation is used intuitively to indicate logical structuring:
anything indented right to the right “belongs” in this group

{ defn; defn; } Indentation can be overridden by using explicit braces and
semicolons.

Lexical Syntax Expressions Definitions

Function application

f x space between function name f and argument expression x

f $ x function f applied to expression x (but right-associative)

x ++ y operators (symbols) are applied infix

(++) x y an infix operator can be applied prefix by enclosing in parens

x `f` y a prefix function can be applied infix, enclosed in backquotes

f (3+4) (not y) round parentheses to group and nest function applications

(+1) a function/operator can be partially applied to only some args

Anonymous functions

\x -> expr backslash pretends to be a lambda.
this anonymous function names its argument x

\ (x:xs) -> expr this anonymous function pattern-matches its list argument

(\x -> x+3) 5 often need parentheses around a lambda term to apply it

Data construction

Build (1+2) True Values are built by applying a data constructor as a function

Local naming

let f x = rhs in
expr

define a function f which can only be used within the given
expr

let (x:xs) = rhs in
expr

evaluate the rhs, whose result is a list. Pattern-match the
components of the list, then use the names x and xs within
the expr

Conditionals

if a then b else c a, b, and c are any expressions of the right types

case expr of
 pat0 -> expr0
 pat1 -> expr1
 otherwise -> e

discriminate between alternative constructions of the value
denoted by expr - alternative patterns are indented.
a catch-all default case is called otherwise

Sequencing evaluation

do pat <- iocomp
 (x:xs) <- action
 something x
 return y

evaluate the side-effecting computation iocomp, and pattern-
match its result against pat, for use in later actions.
subsequent actions are indented to match the first one.
actions can use variables bound by patterns higher up.

Pattern-matching and binding

f (C x 3) functions can pattern-match their arguments. A pattern is an
application of a constructor to either literal values, fresh
variable names, or other patterns.

f (C (2:3:y) 3) patterns can be nested. The value of the rest of the list after
the first two elements is bound to the name y if the first two
elements match the given pattern

case expr of
 pat0 -> expr0
 pat1 -> expr1
 otherwise -> e

when there are multiple overlapping patterns, e.g. in a case
expression or in a series of equations defining a function, the
patterns are matched top-to-bottom, left-to-right.

Function definition (function names start with a lower-case letter)

f :: t the function named f “has type” t. Known as a type
signature.

f arg0 arg1 = rhs function named f has two named arguments, result is rhs

f (x:xs) = rhs function pattern-matches on its list argument, naming its
parts

f x y = rhs
 where rhs = expr

an equational definition can have local definitions
contained in an indented “where” clause

f n | n <0 = rhsNeg
 | n >0 = rhsPos

guards on equations: tests are indented with vertical bar.
there are multiple right-hand-sides, each guarded by a
test

Type definition (type names and constructors start with an Upper-case letter)

data T a = C a Int user-defined datatype T takes a type parameter ‘a’
values of type T are constructed using C
values of type T contain one value of type ‘a’ and an Int

data U = V | W | X user-defined datatype U
values of type U can be either a V construction, W, or X

type M = T Bool M is a synonym for T Bool - the names are
interchangeable

newtype N = N (T U) N is like a synonym for (T U), except the names are not
interchangeable

Other top-level definitions

module M where every module has a capitalised name

import Data.Word import and use functions from another module

class C a where
 method :: type

define a predicate over types.
class methods are indented, and must give a type
signature

instance C Int where
 method = impl

instance of a class predicate for a specific type.
the class method definition is indented - no type signature

Basic types

Int limited precision signed integers (e.g. 30 bits)

Integer arbitrary precision signed integers

Rational arbitrary precision fractional numbers

Float floating-point limited-precision fractional numbers

Double double-word floating-point limited-precision fractionals

Bool Booleans (constants: True, False)

Char single Unicode characters

String textual sequence of characters (= [Char])

Bigger types

(a,b) pair of types a and b (a and b are type variables)

[a] list with element type a (a stands for any type)

a -> b function with argument type a, result type b

a -> b -> c function with two arguments, of types a and b, result type
c

