Famously, one can use this to define the Fibonacci numbers, viz.
catalan :: [Integer]
catalan = 1 : 1 : [ sum [ (-1)^(k+1) * (pc (n - ((k*(3*k-1)) /. 2)) + pc (n - ((k*(3*k+1))/.2))) | k <- [1..n] ] | n <- [2..] ]
where
pc m | m >= 0 = part !! m | otherwise = 0
infixl 6 /.
(/.) = quot