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Abstract

We investigate how the need for evermore programming languages
arises, and how to fulfill this need. We show how the gap between
building a library using an existing language and constructing a com-
pletely new language narrows. In doing so we discuss a few of the past
and current research results from the Software Technology group at
Utrecht University.

1 Introduction

Almost as long as we have computers we have programming languages; start-
ing from FORTRAN in 1958 a whole genealogy of language designs can be
constructed1 and one may wonder why computer scientists are not making
up their mind, once and for all, and define the definite language which unifies
all good ideas thought up thus far.

In this paper we both investigate where this urge for ever new languages
stems from, and show how we might slow down the speed at which new

1For a large overview to put on the wall of your office see: http://www.levenez.com/
lang/
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languages are being proposed, defined, implemented, taught, and learned,
only to be finally discarded and replaced by successors.

We start out by observing that a new language in principle does not add
anything to what we can express already (e.g., using plain machine code); it
may only, albeit dramatically, improve the ease with which we can express
ourselves. Sometimes this new expressiveness is so huge that we speak of a
new paradigm; examples of languages introducing such new paradigms are
Prolog (logic programming), Simula67 (object-oriented Programming) , Lisp
(functional programming), ML (type inferencing) and SASL (lazy evalua-
tion). In this paper we will not focus on such paradigm shifts, but also look
at the more mundane evolution.

In Section 2 we discuss (an aspect) of the role computer science has in re-
lation to other disciplines. It concludes with identifying an important cause
for the wealth of languages we see around us. In Section 3 we introduce
the two extreme approaches to the implementation of a new language: con-
structing a special purpose library or building a new compiler. In Sections
3.1 and 3.2 we discuss some developments in these two areas. Finally we
mention some related research to which the Software Technology group has
been contributing.

2 The role of computer science in relation to

other disciplines

In the historical development of some area of knowledge we can distinguish
a number of phases, for each of which we give a short characterisation:

amateur things are constructed without having real insight in how to pro-
ceed; cost, time, and quality are hard to judge beforehand; the wheel
is reinvented.

craftsmanship artefacts are constructed on a routine basis; cost and quality
are more or less predictable, but products do not vary a lot. Develop-
ment is by trial and error.

scientific patterns are discovered in experimental results and theory is de-
veloped; mathematics is helping us to formulate basic principles and
laws. Skilled people, who understand the formulae, can predict the
quality of products. We can reason about why things do or will not
work out as desired.
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engineering unfortunately the formulated laws may be too complicated to
be applied as they stand, so we develop procedures about when to
apply formulae, and how to apply them. People who do not fully
understand the formulae can be trained to apply them correctly: we
can calculate, without having to interpret intermediate formulae. Cost
becomes predictable.

automation by the time we fully understand the underlying principles,
where to apply them and in what order, we can fully specify what
we want to construct, and can leave it to a machine to do the actual
construction. Computer science has a similar rôle here as mathematics
has in the third phase.

Those who know the Capability Maturity Model, which was developed by
the Software Engineering Institute, will have no problem seeing that there is
a close correspondence between the above-mentioned phases and the levels
of maturity as described by the CMM model.

In order to be able to get to the final stage we thus need a complete formal
description of an area of knowledge; unfortunately a complete description is
not always available, so we see two tasks for computer scientists here:

1. provide assistance to other areas of knowledge in formulating their con-
cepts, laws, invariants, processes, such that the descriptions made by
the experts in that specific area become executable on a computer;

2. provide the mappings from these formulations to executable programs.

One might call the result of the first step a domain-specific programming
language (DSL), since it is specific for the domain at hand. We conclude
that the large increase of the number of such languages is a sign of more
and more disciplines progressing towards the automation stage; each area
of knowledge has its own terminology, ways of formulating things, be it by
drawing diagrams, using formulae, or using formalised language.

So do we have a problem? The answer is definitely affirmative. Design-
ing some domain-specific language may initially seem simple, and a first step
may already provide a very successful product, since its use cuts down on
coding time, avoids common errors, and makes theory widely available. Un-
fortunately this first step is often not the last one and there are many more
to follow, driven by the success of the first one. Once we have the initial
design for a DSL, we start to use it and as a result get inspiration about
how to improve it, and something which looked simple and elegant at the
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beginning soon grows into a monstrous and inconsistent design, “leaving it
up to the customer to find out which combination of features work”.2

How to make the transition into the fifth stage is itself again subject to
the mentioned staging and is often done in an amateur way, without the eye
of a trained computer scientist being around to help and warn.

As a consequence the world abounds with ill-designed programming lan-
guages, which typically exhibit one or more of the following problems:

• incomplete One may start out with a concept A, only to discover later
that concept B is also needed, and so this is added; by the time one
adds concept C the insight comes that all are actually instances of a
more abstract concept X, i.e. A = X(a), B = X(b) and C = X(c). By
this time it may be too late however to add the more abstract concept
X to the language in a proper way, since its introduction interferes with
other constructs which are not easily modified. As a result one decides
to proceed without properly introducing X, and then forgets to provide
the instances of X for other parameters, such as d. A typical example
of this is the possibility to read and write (serialise and deserialise)
values; not all types of values are treated equal here.

• inconsistent It may be the case that the concepts A and B, as intro-
duced before, are actually instances of slightly X ′ and X ′′, where X
and X ′ only differ slightly. By the time the insight is there it may be
too late to introduce the proper concept X, since a lot of already con-
structed software depends on the slight difference in semantics between
X ′ and X ′′ . This sometimes described by: “Every well documented
bug becomes a feature”.

• error prone Making the compiler check whether a specific program
makes sense at all, is a lot of extra work, so many DSLs are de facto dy-
namically typed, just as most scripting languages. From the language
implementers point of view this is optimal, since he does not have to
pay attention to this aspect. Some programmers also see it as a feature
that the compiler never complains about an inconsistent program. The
fact that, if the language turns out to be successful, large numbers of
programmers will be spending a lot of time finding errors which could
have been detected automatically, is something one only regrets once
it happens. We argue that any conceivable static check that helps in
detecting errors should be applied.

2quoting Charles Simonyi, the lead developer of MS Office, advocate of intentional
programming, inventor of the Hungarian notation and space tourist.

4



• lack of abstraction mechanisms Many language designs start out with
no abstraction mechanisms, and once the need arises some form of
macro mechanism is added; sometimes by just calling the C-preprocessor.
This unfortunately does not always work well, and may prohibit static
checking.

• semantic lock-up In defining the semantics of the language we may not
spend enough time to important details, which turn out to become
problems later. A nice example is the absence of automatic garbage
collection in languages as C. The designers wanted to keep things sim-
ple and judged that garbage collection was something which was best
left to the programmer, since with his intimate knowledge of the pro-
gram he knew best when and where to free parts of memory. Once
this is a widely used practice, combined with the possibility to mix
pointer arithmetic with integer arithmetic, there is no way back. The
amount of money lost in programming time, debugging time, and re-
covering from failing programs is too large to be even estimated. Quite
a number of security violations stem from uncontrolled buffer overflows,
which cannot be statically avoided by a proper program analysis; since
the languages were never designed to be subjected to such analyses the
programs themselves have become time bombs.

3 How to realise a language implementation

As we have argued before there is the one hand a good reason for having
quite a few domain-specific languages, but on the other hand we have seen
that defining a complete language is not an easy task, and so the question
arises How to Support the Design and Implementation of Domain-Specific
Languages? We can attack this problem from two sides: library construction
and compiler construction.

From the very beginning general-purpose programming languages have
had procedures and functions, and early on it was recognised that this would
enable the construction of expressive libraries; for example, a fully devel-
oped numerical library can be seen as a domain-specific language, built from
concepts from linear algebra and analysis. Although the availability of such
a “library language” formally does not change the language a program is
written in, the user is actually programming using the concepts from the li-
brary. In such cases we speak about an Embedded Domain-Specific Language.
Given the success of this approach the question arises: Which features of a
host language make it a good vehicle for embedding other languages?

5



At the other end of the spectrum we find the newly designed languages,
an approach which has become popular because tools for the construction of
compilers (parsers, lexers, attribute grammar systems) have become widely
available. Since languages are often not so different we might construct a
library of programming language concepts, from which we can compose new
languages easily.

In the next two subsections we will discuss each of these approaches a bit
further.

3.1 Easier and better ways of building libraries

It is our claim that modern, polymorphically typed, lazy functional pro-
gramming languages such as Haskell [14], are currently the most appropriate
vehicle to embed other languages in.

minimalistic The designers of Haskell have tried to keep the language de-
sign as small as possible; so there is e.g. no distinction between an
expression and a statement: the only thing which can be computed is
an expression. This makes that we also need only a single abstraction
mechanism for procedures and functions.

full abstraction Most special-purpose programming languages have poorly
defined abstraction mechanisms, often not going far beyond a simple
macro-processing system. Although –with a substantial effort– amaz-
ing things can be achieved in this way as we can see from the use of
TEX, we do not think this is the right way to go; programs become
harder to get correct, and often long detours –which have little to do
with the actual problem at hand– have to be taken in order to get
things into acceptable shape. Because our embedded language inherits
its abstraction mechanism from Haskell –by virtue of being an embed-
ded language– it takes a head start with respect to all the individual
implementation efforts.

type checking Most DSLs, and especially the so-called scripting languages,
only have a weak concept of a type system. Haskell, however, has a
very powerful type system, which is not easy to surpass, unless one is
prepared to enter completely new grounds, as with dependently typed
languages such as Agda [12]. One of the huge benefits of working
with a strongly typed language is furthermore that the types of the
library functions already give a very good insight in the role of the
parameters and what a function is computing. The polymorphic data
types (i.e., data types with type parameters) enable us to define new
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type constructors, and thus new ways of combining already existing
types into new types.

clean semantics One of the ways in which the meaning of a language con-
struct is traditionally defined is by its denotational semantics, i.e., by
mapping the language construct onto a mathematical object, usually
being a function. This fits very well with the embedding of domain-
specific languages in Haskell, since functions are just normal values in
Haskell. As a result, implementing a DSL in Haskell almost boils down
to giving its denotational semantics in the conventional way and getting
a compiler for free.

lazy evaluation One of the formalisms of choice in implementing the con-
text sensitive aspects of a language is by using attribute grammars.
Fortunately, the equivalent of attribute grammars can be implemented
straightforwardly in a lazily evaluated functional language; inherited
attributes become parameters and synthesised attributes become part
of the result of the functions giving the semantics of a construct [19, 20].

embedding syntax A new language often comes with new notation. In
Haskell such new notation can be mimicked by introducing new op-
erators with appropriate precedences and associativities. One of the
prime examples here are the so-called parser combinators, which make
it possible to write down expressions which closely resemble context-free
grammars, but effectively evaluate to parsers. Using the class system in
a very cunning way we can even deceive the Haskell compiler to handle
completely new notation [11, 18], which is still an expression but no
longer easily recognised as such.

Of course there are also downsides to the embedding approach. Although
the programmer may think he writes a program in the embedded language, he
is still programming in the host language. As a result of this, error messages
from the type system, which can already be quite challenging in Haskell, are
phrased in terms of the host language constructs too, and without further
measures the underlying implementation shines through. In the case of our
parser combinators, this has as a consequence that the user is not addressed
in terms of terminals, non-terminals, keywords, and productions, but in terms
of the types implementing these constructs.

This problem has been addressed by the thesis of Heeren [5, 7]: the Haskell
type checker is extended in such a way that generated error messages can
be tailored by the programmer. Now, the library designer not only designs
his library, but also the domain-specific error messages that come with the

7



data Expr = Lambda Patterns Expr

-- can contain more alternatives

type Patterns = [Pattern]

type Pattern = String

pExpr :: Parser Token Expr

pExpr

= pAndPrioExpr

<|> Lambda <$ pSyms "\\"

<*> many pVarid

<* pSyms "->"

<* pExpr -- <* should be <*>

Figure 1: Type incorrect program

library. In the Helium compiler [6, 8], which handles a subset of Haskell, this
approach has been implemented with good results. An example of what can
be achieved is given in figure Fig. 1, which contains a program which uses
the parser combinators in an incorrect way. In Fig. 2 we see that Helium,
by using a specialised version of the type rules –which are provided by the
programmer of the library–, manages to address the application programmer
in terms of the embedded language; it uses the word parser and explains
that the types do not match, i.e. that a component is missing in one of
the alternatives. A final option in the Helium compiler is the possibility to
program the search for possible corrections, e.g. by listing functions which are
likely to be confused by the programmer (such as <∗> and <∗ in programming
parsers, or : and ++ by beginning Haskell programmers), and to see whether
parameters have been swapped accidentally. This will help in learning the
embedded language. As we can see in Fig. 3 we can now pinpoint the location
of the mistake even better and suggest corrective actions.

One important development to which Utrecht has contributed is the
phased implementation of embedded languages, thus using techniques from
conventional compiler construction in the implementation of embedded lan-
guages: the embedded program is first represented as a typed abstract syntax
tree, which is subsequently analysed and from which finally a function rep-
resenting its semantics is constructed. In this way a very efficient, error cor-
recting parser combinator library has been produced [17], which has served
as one of the primary examples of this approach, and became the inspiration
for the introduction of arrows [9] into Haskell.
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Compiling Example.hs

(7,6): The result types of the parsers in the operands

of <|> don’t match

left parser : pAndPrioExpr

result type : Expr

right parser : Lambda <$ pSyms "\\" <*> many pVarid

<* pSyms "->"

<* pExpr

result type : Expr -> Expr

Figure 2: Helium, version 1.1 (type rules extension)

Compiling Example.hs

(11,13): Type error in the operator <*

probable fix: use <*> instead

Figure 3: Helium, version 1.1 (type rules extension and sibling functions)

Haskell has now been used for embedding a wide variety of languages,
e.g., by Leijen [10] for accessing databases in a typed way, thus providing
a safer and less cumbersome alternative to embedded SQL-queries. For an
overview one may consult the Haskell website3.

As mentioned before an important aspect of embedding a language is that
the embedded language inherits its type system from the host language, and
thus we have to make sure that the types are also reflected in the abstract
syntax trees representing the embedded programs. It is remarkable that this
can be done in Haskell itself [1]. This patterns has become so common that
it has led to the introduction of generalised algebraic data types (GADTs)
into Haskell, of which we will give a small example.

One may represent expressions, with the types of the values represented
by the expressions as type parameters, as follows:

data Expr a where
Val :: a → Expr a
Apply :: Expr (b → a)→ Expr b → Expr a

eval (Val a) = a
eval (Apply tf ta) = (eval tf ) (eval ta)

Now suppose want to add a polymorphic Pair constructor to the language,
which takes two values of possibly different types, let us say a and b. Then

3http://www.haskell.org/haskellwiki/Applications_and_libraries
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the value which is represented has type (a, b). Unfortunately we have no easy
way to represent this type using the normal Haskell data types. Using the
GADT extension however we can now add an extra constructor representing
pairs:

data Expr a where
... -- as before

Pair :: Expr a → Expr b → Expr (a, b)
The function eval also gets an extra alternative:

eval (Pair ta tb) = (eval ta, eval tb)
The function eval can now conclude from its argument being a Pair that
that the Expr passed was indeed labelled with a pair type.

Using such algebraic data types we have developed a library which makes
it possible to manipulate terms which represent declarative structures (such
as grammars, or a set of mutually recursive definitions) in a type-safe way
[2]. This library was used in building efficient read functions. For every
data type we want to serialise we generate a typed data structure describing
its “grammar”. When the modules are linked these grammar fragments are
dynamically combined, analysed and transformed, and finally mapped onto
a parser. This can all be done in a type-safe way; thus one gets a partial
correctness proof of the finally constructed function for free [21].

3.2 Composing languages and their implementation

Starting from the other end we may try to build libraries which contain
“language fragments”, and libraries which contain common analyses. Out of
these one can quickly construct a compiler for some domain-specific language.

The approach we take here is to lean heavily on attribute grammars (a
domain-specific language for compiler construction), which allow us to de-
scribe language fragments in isolation, and to easily combine them in con-
structing a compiler. We use this technique extensively in the construction
of our own Haskell compiler [3], the details of which can be found on its
website http://www.cs.uu.nl/wiki/bin/view/Ehc/. This compiler is de-
veloped along two axes: along one axis we incrementally build the language
which is compiled, and along the other axis we incrementally add the aspects
a compiler has to deal with, such as parsing, type checking, error reporting,
program analysis, optimisation, and code generation.

Despite being small, Haskell is a large language with a complicated type
system, which allows to infer most of the types; only higher ranked types, ex-
istential types, GADTs, classes and polymorphic recursion need explicit type
annotations. In order to be able to experiment easily with different versions
of the type system we have designed yet another domain-specific language

10



Ruler [4] for describing type systems; from such descriptions we generate
attribute grammar based implementations, provided the definitions have a
specific shape. One of the areas of research is to liberate the current restric-
tions on the shape, and to be able to handle more declarative formulations
fully automatically.

One of the observations which can be made is that in the Haskell world
the development of the language and its compilers, and the development of
the libraries goes hand in hand. It is our view that in the future it will be
possible to build libraries and compilers within a single unified framework,
where languages can be easily extended, the properties of such extensions
can be easily specified, and programs written using such extensions can be
easily verified.

4 Supporting programming

Most DSLs still look like a normal programming language, i.e., they require
a linear, character based representation of their programs. People working
with model-based development are however used to more graphical represen-
tations (such as UML), and thus the question arises whether we can provide
more domain-specific representations. In order to make the use of DSLs easier
we have developed the Proxima framework [16], which provides much more
liberty in presenting and editing programs. In Fig. 4 we show the represen-
tation of a Helium program, in which formulae are presented as they would
occur in a mathematics book, instead of as they are usually represented in a
programming language and thus “FORTRAN (Formula Translator) is finally
there”. Note that the type information given here is all computed by the
combination of the editor with the compiler, such that the programmer gets
automatic feedback when constructing his program.

A final observation which can be made is that with the gradual merging
of type checking, program verification, providing editing feedback and code
generation, the need for incrementally evaluated systems grows; analysing
large artefacts over and over again becomes infeasible. In Utrecht the work
of Vogt [23], Pennings [13] and Saraiva [15] resulted in an incrementally
evaluated attribute grammar system for higher order attribute grammars
[22]. We plan to move these results over into our Haskell based tool set
in the near future, so they become automatically available in the Proxima
framework, which uses these tools heavily.
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Figure 4: The Helium editor at work
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