
On the Expressiveness of

Purely Functional I�O Systems

Paul Hudak

Raman S� Sundaresh

Department of Computer Science

Yale University

Box ���� Yale Station

New Haven� CT �	���

March ��� �
�


Abstract

Functional programming languages have traditionally lacked complete� �exible� and yet ref�
erentially transparent I�O mechanisms� Previous proposals for I�O have used either the notion
of lazy streams or continuations to model interaction with the external world� We discuss and
generalize these models and introduce a third� which we call the systems model� to perform I�O�
The expressiveness of the styles are compared by means of an example� We then give a series
of surprisingly simple translations between the three models� demonstrating that they are not
as di�erent as their programming styles suggest� and implying that the styles could be mixed
within a single program�

The need to express non�deterministic behavior in a functional language is well recognized�
So is the problem of doing so without destroying referential transparency� We survey past
approaches to this problem� and suggest a solution in the context of the I�O models described�

The I�O system of the purely functional languageHaskell is presented� The system includes
a rich set of operations� and distinguishes between �le and channel I�O� The approach to non�
determinism is also presented� A useful aspect of the design is that it includes a rigorous
speci�cation of the behaviour of the operating system� thus precisely �xing the semantics of
the various I�O operations� The Haskell I�O system is capable of supporting many other
paradigms of concurrent computation in a natural way� We demonstrate this through the
emulation of Actors� UNITY� CSP� CCS and Linda�

�



� Introduction

If functional languages are to be used in real applications programming� an e�ective I�O system
seems essential� To many� however� the mention of I�O conjures up an image of state� side�e�ects�
and sequencing� Is there any hope of achieving purely functional� yet universal� and of course
e�cient I�O� This is the question we will address in this paper�

To begin� we identify three basic requirements for such an I�O mechanism�

� Referential Transparency� We consider it inappropriate to use a side�e�ecting function which
returns the next value from the input stream� because such a function 	call it get char

would destroy referential transparency 	get char would have to return a di�erent value every
time it is called
� Similarly� a side�e�ecting print function 	call it put char
 would destroy
referential transparency because� for example� �f �put char �a�� �put char �a��� would
not be the same as �f x x where x � put char �a���

� E�ciency� An essential property of an I�O scheme is e
ciency� It must be possible to imple�
ment the scheme e
ciently without resorting to expensive operations like taking �snapshots�
of the system state�

� Co�operation� Another requirement for a practical I�O scheme is the ability of the external
world to observe the e�ects of a program even though the program has not yet terminated�
Conversely� a program should also be able to observe changes made to the system state after
the program has begun� Thus we must view with suspicion� for example� any scheme which
maps a single initial state into a single �nal state�

The last requirement is important for several reasons� The �rst is that we anticipate writing
programs which co�operate interactively with traditional operating system services� This includes
traditional �le manipulation 	for example the changes made to a �le by an editor need to be
visible to other programs without terminating the editor
� device handling 	for example printing
�
and in general communication with other programs� machines� or users 	for example standard
input�output and TCP�IP protocols
�

Another reason is that we do not want a non�terminating 	or just very slow
 program to tie up
computer resources� we would naturally expect the I�O e�ects of various programs running under
a single operating system to be interleaved� In other words� suppose prog� and prog� are two
programs where prog� performs the I�O operations op� and op� and prog� performs operations
op� and op	� If os is the operating system which maps a list of programs and an initial state into
a �nal state� we would expect�

os 
prog�� prog�� initial
state

to be the �nal state resulting from an arbitrary interleaving of op�� op�� op� and op	� Thus for
each I�O model that we propose� we will either write such an operating system os to show that
the above property does indeed hold� or show why such an operating system cannot be written�

�



��� Purely Functional I�O

I�O proposals meeting all of our requirements are rather di
cult to come by in existing functional
languages� ML �HMT��� and Alfl �Hud���� for example� use side�e�ecting primitives to do I�O�
Since Alfl uses normal order evaluation� it also provides ways of forcing execution order to ensure
deterministic results� We summarize other existing approaches below�

Streams� An elegant and popular model that goes a long way toward meeting our requirements
is the use of streams� lazy lists of data objects� The name stream was �rst coined by Landin �Lan����
since then� several functional languages have used streams for I�O� including Ponder� Hope� and
Miranda� �Fai��� BMS��� Tur���� In these languages prede�ned identi�ers are typically provided
which are bound to speci�c I�O channels� For example� the stream of input characters from the
keyboard might have the name kb� and the stream of output characters to the display might have
the name display � the operating system will provide the binding for kb� and the program is
expected to provide the binding for display�

Although elegant� there are at least three problems with these previous uses of the stream idiom�

�� They are not completely general� since typically the I�O devices and the operations on them
are pre�determined and �xed into the language�

�� The semantics of interactive I�O 	for example� interaction with the user
 is not entirely clear
	in some languages this problem is admitted up front by providing a mechanism to control
the order in which the streams are consumed and produced
�

�� Anomalous situations are ignored� the possibility of error is generally not accounted for�

In the stream model of I�O that we present in Section ���� streams are used to invoke arbitrary
I�O operations with arbitrary responses 	typically either success or failure
� In addition we retain
the elegant use of streams to model interactive I�O� but we are careful to precisely de�ne the
semantics such that the input from a user� for example� can depend on output from the program
	characteristic of many interactive applications
� All three of the requirements stated earlier are
satis�ed�

Continuations� Another model of I�O� namely continuation based I�O� was �rst proposed
in the context of a functional operating system called Nebula �Kar���� The idea reappeared in a
parallel functional language called PFL �Hol���� which is based on CCS �Mil���� and more recently
was adopted in the functional language Hope �MH���� The continuation model is characterized by
a set of transactions� which are functions that typically take a success continuation and failure con�
tinuation as arguments� these continuations are in turn functions that generate more transactions�
The continuation model is appealing because it appears to be quite general� and the continuation
structure makes it easy to reason about the sequentiality of the induced e�ects�

In Section ��� we present a continuation model very similar to these� with one important ex�
ception� we assume a non�strict 	i�e� lazy
 functional language� whereas previous languages using
the continuation approach have been strict� This not only simpli�es the design� but in addition
allows us to use the interactive lazy stream idea within the continuation model� More speci�cally�

�Miranda is a trademark of Research Software Ltd�

�



in PFL and Hope individual characters are read by each continuation operation� while in our model
a single read operation returns a lazy stream� Thus we are able to combine the virtues of both
�idioms� � streams to model demand�driven sequences of data� and continuations to enforce control
restrictions�

Systems� We introduce a third model of I�O in Section ���� which we call the systems model��

in which I�O is viewed as a series of transformations to an initial �system� that captures the state
of the operating system� One by�product of investigations into this model is that we cannot view
a functional program as a function from a single initial state to a single �nal state 	at least not
without severely restricting functionality
� Thus our model actually uses a stream of systems� but
surprisingly� only as output� a single initial system is su
cient to meet all of our requirements�

It is worth noting that the language FL �BWW��� WW��� performs I�O by adding a history
parameter to every function� both as argument and as result� and the notion of a history bears
strong resemblance to our notion of a system� However� FL is a strict language� and the history
objects are implicit� The strict semantics allows the designers to cleanly de�ne the order in which
I�O occurs� and ensures that exactly one history object is in existence at any given time� The
situation is not as simple with a non�strict language� and we view the use of implicit state variables
as undesirable because of its �imperative feel��

��� Equivalence of Models

These three models of I�O � streams� continuations� and systems � induce very di�erent pro�
gramming styles on the user� However� it turns out that there exist surprisingly simple de�nitions
of any one of the models in terms of either of the other two� we give such translations in Section
���� The existence of such translations has two important consequences� First� it indicates that
these models are indeed equal in �expressivness�� thus ending long�standing debates over this issue�
Second� and perhaps more importantly� a language designer can provide all three styles within the
same language� simply by choosing one as �primitive� and then providing modules that de�ne each
of the others in terms of the �rst 	i�e� the styles do not have to be wired into the language
� A
programmer is free to choose the style most suitable to a particular application� and even intermix
several styles in a single program�

��� Expressing Non�Determinism

Non�determinism is a pervasive property of real systems� and thus it seems desirable to express
non�deterministic behavior in a functional program� For example� if a program is to service two
independent sources of input 	say two keyboards
� then any �xed interleaving of the two streams
is unsatisfactory� what is needed is a non�deterministic merge of the two streams� Another use of
non�determinism is to express the so�called parallel�or function 	which has the property that or �

True � or True � � True
�

�Such a model has been part of the folklore for some time� and was an active topic of the Haskell committee�
but we have never seen the details worked out as we have done here�

�



The naive addition of a merge or amb operator to express such behaviors is undesirable because
of the loss of referential transparency� Also� the semantics and expressive power of such operators
are far from clear� Clinger �Cli��� discusses several complications caused by their introduction�

In Section � we review past approaches language designers have taken in adding non�deterministic
behavior to a functional language� and then suggest a solution based on insights obtained from the
design of our I�O systems� The result is a form of non�determinism that maintains referential
transparency within any single program� but not within a collection of programs� we argue that this
is a practical compromise solution to the problem�

��� Haskell I�O

To show how all of these concepts look when incorporated into a real functional language� we
describe in Section � the design of the Haskell I�O system which combines at least some of the
ideas we present�� We demonstrate the power of Haskell I�O by showing how it can easily and
naturally simulate various other concurrent programming paradigms� including Actors� UNITY�
CSP� CCS and Linda�

	In the remainder of this paper all functional programming examples will be written using
Haskell syntax�


� Three Models for Purely Functional I�O

We will introduce our three models of I�O � streams� continuations� and systems � by way of a
slightly modi�ed version of an example from Kernighan and Ritchie�s The C Programming Language
�KR���� This example is a simple �le display program which prompts the user for a number of �le
names� and reads and displays their contents�

The imperative version in C is shown below� In this program the procedure get token reads the
next token o� of an input stream� In the functional programs to be given shortly� get tokens is a
function which tokenizes a character stream� The functional models of I�O assume that characters
typed in at a keyboard are not echoed by the operating system� whereas in the C program they
are�

�For a complete speci�cation of the Haskell I�O system� see �Hea����

�



�include �stdio�h�

main �� �� cat� concatenate files ��

�

FILE �fp� �fopen���

char �get
token���

char �name�

printf��type in file names�n���

while �name � get
token�stdin��

if ��fp � fopen�name��r��� �� NULL� �

printf��can�t open file�n���

break�

� else �

file
display�fp��

fclose�fp��

�

�

file
display�fp� �� copy file to standard output ��

FILE �fp�

�

int c�

while ��c � getc�fp�� �� EOF�

putc�c� stdout��

�

��� The Stream Model

In our streammodel of I�O a program is simply viewed as a black box that generates a stream of I�O
requests� these requests are given to the operating system� processed one�by�one� and returned to
the program as a stream of responses� Thus if Request is the datatype of requests� and Response is
the datatype of responses� then a program p has type 
Response� �� 
Request�� the nth request
generates the nth response�

The response itself depends on the request� and would normally include the possibility of error�
However in the sample program below� tests for failure are omitted� as they are in the C program�
	In Haskell a program has value main��


�Note that resps cannot be taken apart by pattern matching� since this would entail evaluating the response list
before any requests have been issued� resulting in ��

�



main resps �


 AppendChannel �stdout� �type in file names�CR���

ReadChannel �stdin� �

�� file
display �tl �tl resps��

�get
tokens

�case resp��� of

Return user
input �� user
input��

where file
display resps 
� � 
�

� resps �name�names� �


 AppendChannel �stdout� name�

ReadFile name�

AppendChannel

�stdout�

�case resps��� of

Failure msg �� �can�t open file�CR��

Return file
contents �� file
contents� �

�� file
display �tl �tl �tl resps��� names

	The functions hd and tl are the obvious �head� and �tail� functions de�ned on lists� similarly�
we will use fst and snd for selectors on tuples�
 Referential transparency is preserved because
there is no lexical connection between a request and a response� Thus although two di�erent
�read� requests of the same �le are equivalent values� their e�ect will depend on their position in
the request list� and each could invoke a di�erent response� re�ecting the fact that other programs
may have modi�ed the �le in question between the two reads�

We now present an operating system function os which services the requests of 	for simplicity

two programs p� and p�� and executes them in an interleaved manner� This will demonstrate the
model�s capability for co�operation�communication among di�erent programs engaged in I�O�

�tagged
responses� final
state� � os tagged
requests initial
state

where tagged
requests � merge requests� requests�

requests� � p� �untag � tagged
responses�

requests� � p� �untag � tagged
responses�

osmaps a list of tagged requests and an initial state of the system into a list of tagged responses
and a �nal state of the system� The non�deterministic interleaving of e�ects is accomplished via
the merge operator which produces a tagged non�deterministic merge of its two list arguments 	we
return to the issue of non�determinism in Section �
� untag picks out responses of a given tag value
from a tagged list of responses� Note that this scheme can be generalized to an arbitrary number
of programs�

The state of the system is a single�threaded object� and so can be implemented e
ciently� On
the other hand� a certain amount of �le copying may be necessary� For example� consider the
following scenario� First a program issues a read �le request� but since the read is done lazily� no
actual reads are done until the value of the �le is demanded� Suppose in the meantime another

�



program updates the �le� This would mean that a copy of the old �le must be saved until the
reference to it is �released� by the �rst program�

��� The Continuation Model

In this model� instead of having to manipulate lists of requests and responses� the programmer ini�
tiates I�O operations via continuation style transactions� For example� a request such as ReadFile
name in the systems model corresponds to the transaction�

ReadFile name �msg �� error
transaction�

�contents �� success
transaction�

where the second and third arguments are the failure and success continuations� respectively� The
value of the overall expression is the error continuation applied to the resulting error message if the
read fails� and is the success continuation applied to the contents of the �le if the read succeeds�
Below we show the running example in this style� Note that it is laid out in such a way as to
facilitate an �imperative reading� of the program�

main � AppendChannel �stdout� �type in file names�CR�� exit �

ReadChannel �stdin� exit �user
input ��

file
display �get
tokens user
input���

where file
display 
� � done

� �name�names� �

AppendChannel �stdout� name exit �

ReadFile name

�msg �� AppendChannel �stdout�

�can�t open file�CR��

exit

Done�

�contents ��

AppendChannel �stdout� contents exit �

file
display names���

exit � msg �� Done

Referential transparency is maintained in this model for the same reason as in the streammodel�
there is no lexical connection between transactions and results� However� whereas in the stream
model the functional connection was via position in a list� here the connection is established by
way of continuations�

We will write the operating system function for this model too� to show how programs indulging
in this form of I�O can co�operatively change a shared state�

�



os p� p� state � os� p�� p��

where os� Done Done � state

os� ��transaction� �args� succ
cont fail
cont� p �

os �case resp of

Return result �� succ
cont result

Failure msg �� fail
cont msg � p state�

where �resp� state�� � process �transaction� �args� state

os� p� p� � os� p� p�

�p���p��� � perm p� p�

Here the non�deterministic interleaving of e�ects is accomplished via perm� which returns a non�
determinstic permutation of its two arguments� and is �bottom�avoiding� in its �rst argument� The
remainder of the de�nition should be self�explanatory�

Since at any one time� only one version of the system state is in existence� this model can be
implemented e
ciently� However the comment made about �le copying in the stream model applies
equally here�

��� The Systems Model

The naive version of the systems model of I�O views a program simply as a function from an initial
system to a �nal system� where a �system� is meant to capture the entire operating state of interest
	�les� devices� etc�
� Normal I�O operations like reading and writing �les are functions which take
a system and return a result and an �updated� system�

This view� while enticing� is not workable�� To see this� let us try to write an operating system
function for two programs doing I�O in this model�

os p� p� state � amb �p� �p� state�� �p� �p� state��

where amb non�deterministically returns either of its arguments� There is not much more than this
that we can do� It is apparent that there can be no interleaving of the e�ects of the two programs�

Ignoring this problem for the moment� let us look at the model from the angle of e
ciency� The
fact that the I�O operations of two programs cannot be interleaved means that all the operations
desired by a program must be performed contiguously� Since the model makes it possible for non�
single�threaded usage of the system objects� expensive simulation of I�O operations has to be done
within the program� This can be made clear by the following example� a program that writes a �le
�foo� and returns the original system if the write succeeds�

prog � sys� �� case resp of

Success �� sys�

Failure msg �� sys�

where �resp�sys�� � writefile �foo� �junk� sys�

�Thomas Johnsson �rst pointed out this 	aw in a translation of this model into the streams model�

�



In this program the value of resp is needed to determine which system to return� i�e� the program
requires the result of the writefile even before �returning� anything to the I�O system� Thus
the write must be simulated within the program� This means that a proper implementation of this
model is going to be arbitrarily ine
cient�

An obvious �x to this problem is a model in which a program is viewed as a function from a
list of systems to a list of systems 	an alternative considered by the Haskell committee
� where
the e�ect of an operation on one system is visible only in the next input system� This model has
an e
cient implementation since the system state is single�threaded � the order in which I�O
operations are carried out is �xed by the output list of systems� It is also clear that the model can
interleave the e�ects of many programs�

Surprisingly� however� this same functionality can be obtained by a model where programs
map a single initial system to a list of output systems� We prefer this latter model because it is
equivalent in power to the former� but is more convenient to use in that it relieves us from the
tedium of managing two separate lists� As before� the result of an I�O operation on a system is
a response and a modi�ed system� the new system can then be used for further I�O� The main
advantage over the stream model is that some of the tedium of matching requests and responses is
avoided� We show the running example in this style�

main sys� �

sys� � sys� � file
display sys� �get
tokens

�case resp� of

Return user
input �� user
input��

where �sys��resp�� � appendChannel �stdout� �type in filenames�CR�� sys�

�sys��resp�� � readChannel �stdin� sys�

file
display sys 
� � 
�

� sys �name�names� �

sys� � sys� � sys� � file
display sys� names

where �sys��resp�� � appendChannel �stdout� name sys

�sys��resp�� � readFile name sys�

�sys��resp�� �

appendChannel

�stdout�

�case resp� of

Failure msg �� �can�t open file�CR��

Return file
contents �� file
contents�

sys�

Although we have not yet speci�ed the internals of a �system� object� in the next section we
give a representation of a system using streams� One implication of this translation is that the
interleaving property we showed for the streams model holds for the systems model too�

Finally� we note that the sequence of intermediate systems is clearly speci�ed� which means
that the order in which I�O operations are to be done is �xed� This means that the system state
is single�threaded� which in turn implies that e
cient implementations are possible�

�



��� Equivalence of the Three Models

Although it is not apparent at �rst sight� there exist simple translations of one style of I�O into
another� In the sections that follow� we show how each model can support the other two�

����� Streams as Primitive

Given that a program is a function from responses to requests� how can we support the other
two styles� The continuation style can be supported simply by de�ning each transaction to be a
function from responses to requests� just like a program in the streams model� For example� the
de�nition of readChannel and done would be�

readChannel name fail
cont succ
cont �

resps �� ReadChannel name �

case �hd resps� of

Failure msg �� fail
cont msg �tl resps�

Return contents �� succ
cont contents �tl resps�

done resps � 
�

Given these de�nitions� a program written in the continuation style will map a list of responses to
a list of requests as desired�

The system style of I�O can also be supported by representing a system as a response list�request
pair�

type System � �
Response��Request�

The I�O operations are then de�ned to pull out a response and return a new system� As an example
consider the de�nition for readChannel�

readChannel name �resps� req� �

�hd resps� �tl resps� ReadChannel name��

Given these de�nitions� a program p written in the systems model described earlier can be coerced
into the streams model as follows�

resps �� map snd �p �resps� NullRequest��

where NullRequest is a dummy request�

��



����� Continuations as Primitive

Using continuations as primitive� �rst we will show how to provide a stream style of I�O� Given
a program written in the stream model� its meaning is given by the following continuation style
function c� which can be viewed as an interpreter for the stream model� written in the continuation
model��

c prog �

case �prog bottom� of


� �� Done

�ReadChannel name� � reqs ��

readChannel name

�msg �� c �resps �� tl �prog �Failure msg � resps����

�contents �� c �resps �� tl �prog �Return contents � resps����

����and similarly for each other request����

bottom � bottom

It is interesting to note that this translation has an unavoidable �space leak�� in that the two
continuation arguments grow linearly in the number of requests issued� This also implies that the
time to process n requests grows as n�� since the nth request can only be obtained by applying tl

n�� times� The space leak exists because the function has to be reevaluted to get information about
the rest of the program��

A very similar translation provides the systems style of I�O� with systems and the I�O functions
being represented as in the previous section� The details are omitted�

����� Systems as Primitive

Using the systems model� simulating streams is rather straightforward� Consider a program s writ�
ten in the streams model� to run it in the systems model� we would use the following �interpreter��

sys� �� map fst answers

where answers � scan �x �� y �� �req�to�fn y� �fst x��

�sys��NullResp�

requests

requests � s responses

responses � map snd answers

�A translation similar to this was �rst given by Simon Peyton Jones�
�Given f � � a��� the second request can be accessed only by hd�tl�f a����� i�e� f must be reevaluated on

the whole argument� Compare this with a program in the continuation model
 Given a program �transaction��

�success continuation� �failure continuation� all we have to do to get at the second transaction given the
response to the �rst one� is to apply one of the continuations �depending on whether the operation succeeded or
failed� to the response�

��



req�to�fn gives the system operator corresponding to a request� For example� �req�to�fn
�ReadChannel name�� is �readChannel name�� scan is de�ned by�

scan f a 
� � 
�

� f a �x�xs� � f a x � scan f �f a x� xs

To provide a continuation style� we write the transactions in the systems model� For example�
the readChannel and done transactions are de�ned by�

readChannelC name fail
cont succ
cont �

sys �� sys� � �case resp of

Failure msg �� fail
cont msg sys�

Return contents �� succ
cont contents sys��

where �sys��resp� � readChannelS name sys

done � sys �� 
�

where readChannelC and readChannelS are the continuation and system functions� respectively�
for reading a channel� Thus� given the above de�nitions� a program written in the continuation
style has type System �� 
System��

��� Comments

Given that the models are all equivalent� what can we say about their merits with respect to other
factors such as style� ease of programming� etc�� In this section we comment on these and other
issues�

� Programs using the stream style must be written with care� since subtle strictness bugs can
arise� The root of the problem is that examining a response �before� the corresponding
request is issued results in �deadlock� 	i�e� �
� which is an easy mistake to make since the
response list and request list are completely separate� A particularly subtle form of this bug
occurs in combination with pattern matching� For example� the following program� which
purports to write a simple message to standard output� will not work�

main 
resp� � 
 WriteChannel �stdout� �hello� �

This is because pattern�matching demands that the response list be of a certain structure
even before the simple request is issued�

� The equivalence of the styles has an interesting implication� they can be used together in a
single program� especially 	for stylistic reasons
 when the program is divided into modules�
Each module can use the I�O style most suited to it or most preferred by its author�

��



� All three I�O models bene�t from non�strict semantics in two distinct ways� The �rst is
that the operating system can delay responding to an I�O operation until the response is
demanded by the program� To see how this is useful consider the following compiler scenario�
For each library function mentioned in a source program� a certain information �le must be
read� Ordinarily� one must choose either to make an extra pass of the program to pick out
the library functions and read the required information� or one must interleave code to do the
reading with the main pass of the compiler� Both alternatives are unsatisfactory� the �rst is
ine
cient� while the second destroys modularity� In our I�O systems lazy evaluation comes
to the rescue� We would �rst �read� the required information for all the library �les� but the
actual reading takes place only when the values are demanded� i�e� only for library functions
mentioned in the program� Thus both e
ciency and modularity are preserved�

The second bene�t is that since the response to requests like ReadChannel is a lazy stream
itself 	i�e� a stream of characters
� the routines which do the computation need never deal
with I�O or synchronization of I�O� they simply get a character list as argument� which they
process in the usual functional style�

� An important characteristic of all the functional I�O schemes discussed is their ability to
�feel� external e�ects� This capability is invaluable for interactive programs like editors�
The streams and continuation models obviously provide this capability� but what is perhaps
surprising is that the systems model does also� even though it takes only one initial system
as input� This can be seen by the simulation of systems using streams given earlier�

� In our experience with writing example programs� we have found that the continuation style
is often easier to use and the resulting programs easier to read� The reasons for this are that
the continuation model reduces the syntax for handling the responses to I�O operations� the
response handling is in a sense �built�in��

� Non�Determinism

One of the well known shortcomings of functional languages is their inability to express non�
deterministic behaviour� Henderson �Hen��� shows how introduction of such behavior into a func�
tional language makes it possible to write a wide range of useful operating system�like programs�
He introduces non�determinism by the use of an operator called merge� which produces the non�
deterministic merge of two lists� The problem with this solution is that referential transparency
is destroyed� This implies that equational reasoning� an important program veri�cation tool� can
no longer be used� Also� programs using these techniques tend to be di
cult to read� The term
�sphagetti programming� has been used to describe them �Sto��� Tur���� The explicit use of
non�determinism also raises a host of questions about its interaction with the parameter passing
mechanism �Cli��� and the formal semantics of non�deterministic operators is complex �SS����

First� we shall critically survey some of the proposals made to overcome these problems� and
then outline our proposal�

��



��� Stoye	s Approach

Stoye �Sto��� views an operating system as a collection of processes� each of which is a functional
program with a single input list and a single output list� The output list of a process is a list of
tagged data� the tag specifying the addressee� The non�determinism in the system comes into play
when two processes send messages to the same process� All the messages sent to a given process are
�merged� into a single list and given to it� This merge occurs outside of all the processes in what
Stoye calls the sorting o�ce� The advantage of this scheme is that each of the processes themselves
are referentially transparent� and can be subjected to equational reasoning� Turner �Tur��� re�ned
this idea somewhat for use in another functional operating system e�ort� the KAOS project�

Stoye applies this style pro�tably to the task of writing operating system programs like device
handlers� But we claim that there are applications where this style is not suited ideally� Consider
the well known generate�and�test paradigm� �rst compute a set of candidate solutions to a problem�
then apply in parallel a test to each of them� We wish to be informed of solutions as and when
they are found� In a functional language without non�determinism� this behaviour is impossible to
obtain� The list of test results is obtained in a �xed order and if say� any one of the tests takes
a long time� solutions further down in the list which are already available will be delayed� In the
case that a test does not terminate� solutions further down the list may never be displayed�

To express this behaviour in Stoye�s scheme� we would need to create a separate process for
each of the tests and have them send their results to another process which collects them � the
non�determinism in the sorting�o
ce gives the desired behaviour� But now the code is considerably
more complex� and modularity has been impaired�

��� Burton	s Approach

Burton �Bur��� addresses the problem of loss of referential transparency in a di�erent way� and
comes up with a solution involving what he calls �pseudo�data�� He proposed to supply each
program with an extra argument� a in�nite binary tree of values� Whenever the program needs
to make a non�deterministic choice� the binary tree is consulted 	as a kind of oracle
� A tree is
chosen rather than a list because any number of subtrees can be extracted from a binary tree�
Burton notes that in practice the values in the tree will be determined at run�time 	when used as
an argument to a special function
� but once �xed will never change�

While Burton�s proposal does provide non�determinism with referential transparency� it still
advocates unfettered 	and possibly undisciplined
 use of the merge operator� Stoye �Sto��� and
Turner �Tur��� claim that the unrestricted use of a non�deterministic operator like merge reduces the
readability of the program� in Burton�s proposal this criticism is heightened because the �pseudo�
data� tends to clutter the program even more�

��� Our Approach

We will refer to Burton�style non�determinism as being �amb�like�� and to Stoye�style non�determinism
as being �process�like�� In this section we will show how both kinds of non�determinism may be
achieved via small extension to our I�O models� and we discuss a related method used in Haskell�

��



A simple way to achieve amb�like non�determinism in the streams model is to introduce a
request called amb which takes two arguments� and the corresponding response would return the
non�deterministic choice between those arguments� The same idea could be used with either the
continuation or systems model as well� In this way we can achieve amb�like non�determinism in
a referentially transparent way� but without cluttering up a program with �psuedo�data�� The
�generate�and�test� problem mentioned earlier can be solved nicely with this approach�

Similarly� the process�like non�determinism that Stoye uses can be achieved by providing a
special request to perform the function of Stoye�s sorting o
ce� In a later section we will in fact
exploit this idea in demonstrating how to express other paradigms of concurrency�

As can be seen� the fundamental idea behind our approach to non�determinism is the use of the
operating system to provide �special non�deterministic services�� such as amb� the sorting o
ce�
or whatever� Another example of such specialization is the non�deterministic servicing of multiple
agents 	such as two keyboards
� which can be handled by generalizing the ReadChannel request to
one that takes a list of channels� the response being a non�deterministic merge of the streams� This
was in fact the solution adopted in Haskell�

Analogous to channel read� the channel write request WriteChannel could also be generalized
to take a number of streams and write their non�deterministic merge to the named channel� This�
however� may require logical parallelism within a program� and thus may be more di
cult to
implement than any of the ideas mentioned so far� Nevertheless� it may be desirable as an alternative
solution to� for example� the �generate�and�test� paradigm�

� The Haskell I�O System

This sections describes in detail the speci�cation of the Haskell I�O system� Of noteable interest
is section ���� where the semantics of a Haskell program engaged in I�O is described within the
operating system in which it runs�

The Haskell I�O system uni�es two popular styles of purely functional I�O processing� the
stream model and the continuation model� Programs in either style may be combined under this
framework with a well�de�ned semantics� The speci�c I�O operations available in each style are
identical� what di�ers is the way they are expressed� In both cases arbitrary I�O operations within
conventional operating systems may be induced while retaining referential transparency internal to
a program�

��� Stream�based I�O

A Haskell program engaged in input�output 	I�O
 processing must have type�

Behavior � 
Response� �� 
Request�

Intuitively� 
Response� is an ordered list of responses� and 
Request� is an ordered list of requests�
The nth response is the reply of the operating system to the nth request�

The required requests for a valid implementation are�

��



data Request � ReadFile Name

� WriteFile Name Contents

� AppendFile Name Contents

� DeleteFile Name

� ReadChannel Name

� ReadChannels 
Name�

� AppendChannel Name Contents

type Name � String

Requests operate on two conceptually di�erent components of a system� a �le system 	re�
sponding to the �rst four requests above
� and a channel system 	responding to the last three
�
The �le system is fairly conventional� a mapping of �le names to contents� The channel sys�
tem consists of a collection of channels� examples of which include standard�input and standard�
output� A channel is a one�way communication medium � it either consumes values from the
program 	via AppendChannel
 or produces values for the program 	via response to ReadChannel

or ReadChannels
� Channels communicate to and from agents 	a concept to be made more precise
later
� Examples of agents include line printers� disk controllers� networks� and human beings�
As an example of the latter� the user is the consumer of standard�output and the producer of
standard�input�

Requests to the �le system are in general order�dependent� if i � j� then the response to the
ith request may depend on that of the jth request� In the case of the channel system� the nature
of the dependencies is dictated by the agents� and in certain cases exhibits reverse dependencies�
In all cases� external e�ects may also be felt �between� internal e�ects� All of this is formalized in
�Hea����

Responses are de�ned by�

data Response � Success

� Return Contents

� TagReturn TagContents

� Failure ErrorMsg

type ErrorMsg � String

Thus the response to a request is one of several kinds of success� or failure� Return and
TagReturn occur when results are expected� whereas Success occurs when a simple acknowledge�
ment is su
cient� Information about the kind of failure is contained in the ErrorMsg� the exact
nature of which depends on the request� but is otherwise left unspeci�ed�

The datatypes Contents and TagContents de�ne the kinds of values that are allowed to be
stored in a �le or communicated on a channel�

type Contents � String

type TagContents � 
 �Name�Char� �

��



A value whose type is an instance of the class Gap may be written to a �le 	or communicated on a
channel
 by �rst using put to convert it to a string� similarly� to read such a value from a �le 	or a
channel
� get must be used� �

��� Continuation�based I�O

Haskell supports an alternate style of I�O called continuation�based I�O� Under this model a
Haskell program is still considered to have type 
Response���
Request�� but instead of having
the user manipulate the requests and responses directly� a collection of transactions are de�ned
which capture the e�ect of each request�response pair using a continuation style�

Transactions are just functions� For each request Req there corresponds a transaction req� as
shown below� For example� ReadFile is a request normally used in a form such as �ReadFile name�
and is expected to induce either a failure response �Failure msg� or success response �Return
contents�� In contrast� using the continuation style the transaction readFile would be used in a
form such as�

readFile name �msg �� error
transaction�

�contents �� success
transaction�

where the second and third arguments are the failure continuation and success continuation� respec�
tively� If the transaction fails� the error continuation is applied to the error message� if it succeeds
the success continuation is applied to the contents of the �le� This functionality is de�ned in terms
of requests and responses as shown below�

type Behavior � 
Response� �� 
Request�

type SuccCont � Behavior

type RetCont � Contents �� Behavior

type TagRetCont � TagContents �� Behavior

type FailCont � ErrorMsg �� Behavior

�� The transactions are�

done �� Behavior

readFile �� Name �� FailCont��RetCont ��Behavior

writeFile �� Name ��Contents��FailCont��SuccCont ��Behavior

appendFile �� Name ��Contents��FailCont��SuccCont ��Behavior

deleteFile �� Name �� FailCont��SuccCont ��Behavior

readChannel �� Name �� FailCont��RetCont ��Behavior

readChannels ��
Name��� FailCont��TagRetCont��Behavior

appendChannel�� Name ��Contents��FailCont��SuccCont ��Behavior

done resps � 
�

readFile name fail succ resps �

�put and get are automatically derived for each type� For more on this see �Hea����

��



�ReadFile name� �

case �head resps� of

Return contents �� succ contents �tail resps�

Failure msg �� fail msg �tail resps�

writeFile name contents fail succ resps �

�WriteFile name contents� �

case �head resps� of

Success �� succ �tail resps�

Failure msg �� fail msg �tail resps�

appendFile name contents fail succ resps �

�AppendFile name contents� �

case �head resps� of

Success �� succ �tail resps�

Failure msg �� fail msg �tail resps�

deleteFile name fail succ resps �

�DeleteFile name� �

case �head resps� of

Success �� succ �tail resps�

Failure msg �� fail msg �tail resps�

readChannel name fail succ resps �

�ReadChannel name� �

case �head resps� of

Return contents �� succ contents �tail resps�

Failure msg �� fail msg �tail resps�

readChannels names fail succ resps �

�ReadChannels names� �

case �head resps� of

TagReturn tcontents �� succ tcontents �tail resps�

Failure msg �� fail msg �tail resps�

appendChannel name contents fail succ resps �

�AppendChannel name contents� �

case �head resps� of

Success �� succ �tail resps�

Failure msg �� fail msg �tail resps�

��� File System Requests

In the descriptions that follow� requests are described using the underlying stream model � the
corresponding behavior using the continuation model should be obvious� Also� only the successful
situations are described � failures generally result in a system�dependent response indicating the
cause of failure� Typical failure messages are �File not found�� �Access rights violation��
etc�

ReadFile name

��



Accesses the contents of the �le named name� If successful� the response will be of the form Return

contents� where the structure of contents will depend� of course� on what was written� Typically�
and the only required aspect of a valid implementation� the contents will be a 	lazy
 list of �led
characters�

For example� to sum together all of the elements of an integer �le 	one written with contents put
� grade list ��
 whose name is �grades�� one would �rst issue the request ReadFile �grades��
If the response is of the form Return filed grade list� then�

foldl ��� � grades

where �grades� restfile� � �get � filed
grade
list�

would sum the grades accordingly�

WriteFile name contents

Associates with the �le name the contents contents� A successful response has form Success�

Given the two juxtaposed requests�


 ���� WriteFile name contents�� ReadFile name� ��� �

with the corresponding responses�


 ���� Success� Return contents�� ��� �

then contents� �� contents�� assuming there were no external e�ects�

AppendFile name contents

DeleteFile name

These induce the obvious e�ects� with successful response Success�

Note that a proper implementation of ReadFile may at times have to make copies of �les in
order to preserve referential transparency � a successful read of a �le should preserve the correct
contents� despite future writes to or deletions of the �le�

��� Channel System Requests

Channels are inherently di�erent from �les � they contain �ephemeral� streams of data as opposed
to �persistent� stationary values� The most common channels are standard�input� standard�output�
and standard�error� and in fact these three are the only required channels in a valid implementation�
where they must have the names �stdin�� �stdout�� and �stderr�� respectively�

ReadChannel name

��



Opens the channel named name for input� The successful response returns the channel contents
as a lazy stream� Possible failures include �Channel does not exist�� �Illegal access�� and
�Channel is write�only��

Unlike �les� once a channel has been opened� it cannot be opened again in the same program�
This re�ects the ephemeral nature of its contents and prevents a serious �space leak��

ReadChannels 
name�� ���� namek�

Opens name� through namek for input� Successful response has type TagReturn 
�Name�Char���
where the list of tagged elements is the non�deterministic merge of the individual channels� If an
element of this list has form �namei�ci�� then it came from channel namei in the list of channel
names given to ReadChannels�

Note that although non�determinism is mentioned� it is con�ned to the operating system� and
thus programs using ReadChannels are internally referentially transparent�

AppendChannel name contents

Has the obvious e�ect of writing contents to the channel named name� The semantics here is
similar to that of AppendFile in that the contents is appended to whatever was previously written�

Note that channels cannot be deleted� nor is there a notion of creating a channel�

��� Optional Requests

The following requests are not required of a valid Haskell implementation� but may be useful�

CreateProcess prog

Has the e�ect of introducing a new program prog into the operating system� prog should have the
type 
Response� �� 
Request�� This request is necessary if programs such as operating system
command line interpreters are to be written in Haskell�

CloseChannel name

Closes the named channel which may then be reopened� Certain kinds of devices may require this
request�

CreateDirectory

DeleteDirectory

These induce the obvious e�ects�

��



��
 I�O Semantics

The behavior of a Haskell program engaged in I�O is given within the context in which it is
running� That context will be described using standard Haskell code augmented with a non�
deterministic merge operator�

The state of the operating system 	OS state
 is completely described by the �le system and the
channel system� The channel system is split into two subsystems� the input channel system and
the output channel system�

type State � �FileSystem� ChannelSystem�

type FileSystem � Name �� Response

type ChannelSystem � �Ics� Ocs�

type Ics � Name �� �Agent� Open�

type Ocs � Name �� Response

type Agent � 
State� �� Response

type Open � Pid �� Bool

type Pid � Int

type Plist � 
�Pid�
Request��Response���

Note that an agent maps a list of OS states to responses� Those responses will be used as the
contents of input channels� and thus can depend on output channels� other input channels� �les� or
any combination thereof� For example� a valid implementation is required to allow the user to act
as agent between the standard output channel and standard input channel�

Running processes 	i�e� programs
 are identi�ed by a unique Pid� Elements of Plist are lists
of running programs�

os �� TagReqlist �� State �� �TagResplist� State�

type TagResplist � 
�Pid�Response��

type TagReqlist � 
�Pid�Request��

The operating system is modeled as a 	non�deterministic
 function os� The os takes a tagged
request list and an initial state� and returns a tagged response list� a �nal state and a list of
processes� Given an initial list of programs start plist� os must exhibit the following behavior�

�tag
resplist� state�� plist� � os tag
reqlist state

tag
reqlist � merge 
 zip 
pid�pid���

�proc �untag pid tag
resplist��

�� �pid� proc� �� processes �

processes � start
plist �� plist

where merge is a non�deterministic merge of a list of lists� and untag is de�ned below�

untag n 
� � 
�

� n ��m�resp��resps� � �n��m� �� resp��untag n resps��

untag n resps

��



This relationship accounts for dynamic process creation using CreateProcess�

In addition� a valid implementation must ensure that the input channel system is de�ned at
�stdin� and the output channel system is de�ned at both �stdout� and �stderr�� Furthermore�
if the agent attached to standard�input is called user 	i�e� ics �stdin� has form �user� open�
�
then user must depend at least on standard�output� In other words� the following constraint must
hold�

user 
���� �fs��ics�ocs��� ���� � ��� user� �ocs �stdout�� ���

where user� is a strict� but otherwise arbitrary� function modeling the user� Its strictness corre�
sponds to the user�s consumption of standard�output in the process of determining standard�input�

Finally� the required behavior of os in response to each kind of request is given in �Hea����

��� Comments

� Since we have already seen that streams can e
ciently support other styles of I�O� we chose
streams as the primitive in Haskell 	for example� they avoid the linear�space quadratic�time
ine
cient that would result if continuations were chosen as primitive
� This does not mean
that streams are the preferred programming model� but just that they are considered simple
and general enough to be designated as primitive�

� Note that of the non�deterministic requests only ReadChannels is a required feature of
Haskell� This re�ects the feeling that while ReadChannels is de�nitely a useful operation�
the non�deterministic write operation will �nd use only in a parallel implementation�

� The only type which the I�O system will handle is String� Thus every other type will �rst
have to be converted to�from String before�after I�O� This is potentially a problem� for it
would be very inconvenient if the programmer had to write two such routines for every type
in his program� Haskell solves this problem by automatically generating such functions for
any data type via the derived instance declaration mechanism �Hea����

� We have introduced the notion of an agent that consumes data on output channels and pro�
duces data on input channels� This is useful in capturing the semantics of interactive I�O
operations� For example� the user is an agent who consumes standard output and produces
standard input� This particular agent is required to be strict in the standard output� corre�
sponding to the notion that the user reads the terminal display before typing at the keyboard�

� Other Programming Paradigms

What is the relationship between Haskell and other proposals for concurrent computation� To
put the expressive power of Haskell into context� we will show in this section how other styles can
be expressed fairly naturally in Haskell 	or in any functional language incorporating our ideas
about functional I�O
� The point is not to show �equivalence�� but to demonstrate how these styles
�nd a concise expression in Haskell�

��



��� Haskell� the Actor

The Actor Model of computation �Agh��� consists of a number of computational agents called
actors� An actor maps each incoming communication to a ��tuple consisting of�

� A �nite set of communications sent to other actors�

� A replacement behavior 	which governs the response to the next communication processed
�

� A �nite set of new actors created�

It is not di
cult to see how the Haskell I�O system can be used to write actor programs�
Each actor is represented by a Haskell program� In the actor model� communication is handled
by an underlying invisible mail system 	similar in ways to Stoye�s sorting o
ce
 � in Haskell

one I�O channel can be dedicated to function as this mailbox� Note that each process needs a
unique tag to identify addressees of the messages� Thus� communication can occur by I�O write
operations� The replacement behavior is simply expressed as a recursive function call on the rest of
the messages for the actor� Creating new actors can be achieved via Haskell�s CreateProcess�

There have been several languages based on the actor model� Agha �Agh��� de�nes one called
SAL� The following SAL program fragment models a shared bank account� 	It is a simpli�ed
version of the example in �Agh����
 Only two operations� namely depositing and balance querying�
are allowed� Both these operations return the balance after completion� 	In the program that
follows� r speci�es the type of the transaction� d the amount involved� and m speci�es the mail
address of the customer�


def bank
account �a� 
r� d� m�

if r � deposit then

become bank
account �a�d� ��

send 
a�d� to m

fi

��

if r � balance then

become bank
account �a� ��

send 
a� to m

fi

end def

The corresponding Haskell program would look as follows� The program can be made to
look even more like the actor version by de�ning syntax to mimic become� send and other SAL
primitives�

main resps �


 ReadChannel �mailsystem��

WriteChannel �mailsystem� answers �

where answers � put �bank
account � queries�

��



queries � get resps���

bank
account a 
� � 
�

� a �DEPOSIT d m � rest� � �a�d�m� � bank
account �a�d� rest

� a �BALANCE m � rest� � �a� m� � bank
account a rest

��� The UNITY in Haskell

UNITY is a computational model and a proof system �CM��� for developing programs in general
and parallel programs in particular� A UNITY program consists of a declaration of variables� a spec�
i�cation of their initial values� and a set of multiple assignment statements� A program execution
starts from any state satisfying the initial condition and goes on forever� in each step of execu�
tion some assignment statement is selected non�deterministically and executed� Non�deterministic
selection is constrained by the following �fairness� rule� Every statement is selected in�nitely often�

The following UNITY program 	from �CM���
 non�deterministically merges two sequences x

and y into z�

Program MUX

assign

x�z �� tail�x�� z���x��head�x�� if x �� null

y�z �� tail�y�� z���y��head�y�� if y �� null

end �MUX�

In Haskell� this could be naturally expressed as follows� The state of the program would be
represented as a tuple of the relevant values� and each of the UNITY multiple�assignment statements
would be written as a state transforming function� The non�deterministic control can be provided
by the oracle form of non�determinism described before� At each stage� one of the functions would
be chosen by inspecting the ressult of a choose transaction� and applied to the state to obtain a
new state�

mux �x�y�
�� where

mux state � choose 
f�� f�� �f ��

mux �f state��

f� �x�xs� y� z� � �xs� y� z �� 
x��

f� �x� y�ys� z� � �x� ys� z �� 
y��

This style of programming in Haskell has been used previously to express asynchronous process
simulations �HA����

��� Haskell meets Linda

Linda �Gel��� is a parallel programming language� where a program is a set of cooperating processes
communicating asynchronously via a global data structure called tuple space� Processes add tuples
to tuple space by an out operation� The operation of removing tuples from tuple space 	in
 takes a
template and instantiates variable slots with values from a tuple which matches the constant slots�

��



Haskell already provides a process oriented model 	the only di�erence being that the processes
must be Haskell programs
� The �exibility of the I�O system can be put to good use by providing
a I�O device called 	say
 tuplespace� The operations on this tuple space are in the form of requests
corresponding to in and out�

A common Linda paradigm is the �task bag� paradigm� where processes pick out tasks from a
bag� and add in new tasks generated� In Linda� each process would look as follows�

process
i

�

do forever �

in ��task�� var task�descriptor� ��pick task to work on��

��� process the task ���

out��task�� task�descriptor� ��add new task to bag ��

�

�

In Haskell this would look as follows�

process
i resps � 
ReadChannel �tuplespace�

��task�� var task�descriptor��

WriteChannel �tuplespace� new
tasks�

where new
tasks � process tasks

tasks � resps���

��� description of process ���

��� Communicating Sequential 
Haskell� Processes

Much work has been done in developing a calculus of interacting processes� the two most important
being CCS �Mil��� and CSP �Hoa��� Hoa���� It is clear that the parallel programming paradigm
CSP has a communication structure which could be reproduced in Haskell� The main di�erence�
as Hoare points out in a comparison with �Kah���� is that communication in CSP is synchronous�
while functional multiprogramming models 	including Haskell
 are asynchronous� To force syn�
chronous execution of Haskell processes� the �sorting o
ce� described earlier could match input
and output requests before sending out a response� Turner �Tur��� re�nes Stoye�s scheme to achieve
synchronous communication in a similar way�

In �Hoa��� Hoare also points out that in a functional multiprocessing system the processes
themselves are deterministic� for example it is not possible for a process to wait for the �rst of
two inputs� This criticism clearly does not apply to Haskell� since non�deterministic requests like
ReadChannels give us the desired functionality without destroying referential transparency�

� Conclusion

Contrary to popular belief� purely functional I�O can be both �exible and concise� Lazy evaluation�
one of the most important tools in the functional programmer�s toolbox� serves us well in the context

��



of I�O� perhaps this should come as no surprise� We plan to gain more practical experience by
writing numerous functional programs involving I�O using Haskell�

Non�determinism is manifested in the �glue� with with programs are put together� Thus the
programs themeselves remain referentially transparent� These approaches also naturally apply to
work on writing non�determinate systems in a functional language 	notably� functional operating
systems
�

References

�Agh��� Gul Agha� Semantic Considerations in the Actor Paradigm of Concurrent Computation�
pages �������� Volume ��� of Lecture Notes in Computer Science� Springer Verlag� �����

�Agh��� Gul Agha� Actors A Model of Concurrent Computation in Distributed Systems� The
MIT Press� �����

�BMS��� Burstall� McQueen� and Sanella� Hope� an experimental applicative language� In Pro�
ceedings �st International LISP conference� Stanford� �����

�Bur��� F� W� Burton� Nondeterminism with referential transparency in functional programming
languages� The Computer Journal� ��	�
��������� �����

�BWW��� John Backus� John H� Williams� and Edward L� Wimmers� FL Language Manual 	Pre�
liminary Version
� Technical Report RJ ���� 	�����
� IBM Almaden Research Center�
November �����

�Cli��� W� Clinger� Nondeterministic call by need is neither lazy nor by name� In Proc� ��
�
ACM Symp� LISP and Functional Programming� �����

�CM��� K� Mani Chandy and Jayadev Mishra� Parallel Program Design� Addison�Wesley� �����

�Fai��� Jon Fairbairn� Design and Implementation of a Simple Typed Language Based on the
Lambda�Calculus� Technical Report ��� University of Cambridge Computer Laboratory�
May �����

�Gel��� David Gelernter� Generative communication in linda� ACM Trans� Program� Lang�
Syst�� �	�
�������� January �����

�HA��� Paul Hudak and Steve Anderson� Haskell Solutions to the Language Session
Problems at the ��

 Salishan High�Speed Computing Conference� Technical Re�
port YALEU�DCS�RR����� Yale University� Department of Computer Science� January
�����

�Hea��� Paul Hudak and Philip Wadler et al� Report on the Functional Programming Language
Haskell� Technical Report YALEU�DCS�RR����� Department of Computer Science�
Yale University� December �����

��



�Hen��� P� Henderson� Purely functional operating systems� In J� Darlington� P� Henderson�
and D�A� Turner� editors� Functional Programming and its Applications� pages ��������
Cambridge University Press� �����

�HMT��� Robert Harper� Robin Milner� and Mads Tofte� The De�nition of Standard ML Version
�� Technical Report ECS�LFCS������� Laboratory for Foundations of Computer Science�
Department of Computer Science � University of Edinburgh� August �����

�Hoa��� C� A� R� Hoare� Communicating sequential processes� Comm� ACM� ��	�
���������
�����

�Hoa��� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall� �����

�Hol��� S oren Holmstr om� PFL� A Functional Language for Parallel Programming� and its
Implementation� Technical Report �� Programming Methodology Group� University of
G oteborg and Chalmers University of Technology� September �����

�Hud��� Paul Hudak� ALFL Reference Manual and Programmer�s Guide� Technical Re�
port YALEU�DCS�TR����� Yale University Department of Computer Science� August
�����

�Kah��� G� Kahn� Information Processing� chapter The Semantics of a simple language for
Parallel Programming� pages �������� Volume ��� North Holland� �����

�Kar��� K� Karlsson� Nebula� a Functional Operating System� Technical Report� Chalmers
University� �����

�KR��� Brian W� Kernighan and Dennis M� Ritchie� The C Programming Language� Prentice�
Hall� �����

�Lan��� P� J� Landin� A correspondence between algol �� and church�s lambda notation� Comm�
ACM� ��	��
��������� �����

�MH��� Lee M� McLoughlin and Sean Hayes� Interlanguage working from a pure functional
language� Functional Programming mailing list� November �����

�Mil��� Robin Milner� A Calculus of Communicating Systems� Volume �� of Lecture Notes in
Computer Science� Springer Verlag� �����

�SS��� Harald Sondergaard and Peter Sestoft� Nondeterminism in Functional Languages� Tech�
nical Report ������ Department of Computer Science� University of Melbourne� �����

�Sto��� W� Stoye� A New Scheme for Writing Functional Operating Systems� Technical Re�
port ��� Cambridge University Computer Laboratory� �����

�Tur��� David Turner� Miranda� a non�strict functional language with polymorphic types� In
Proceedings IFIP International Conference on Functional Programming Languages and
Computer Architecture� Nancy France 	Springer Lecture Notes in Computer Science�
vol ���
� September �����

��



�Tur��� David Turner� Functional Programming and Communicating Processes� pages ������
Volume ��� of Lecture Notes in Computer Science� Springer Verlag� �����

�WW��� John H� Williams and Edward L� Wimmers� Sacri�cing simplicity for convenience� where
do you draw the line� In Proceedings of the Fifteenth Annual ACM SIGACT�SIGPLAN
Symposium on Principles of Programming Languages � San Diego� California� January
�����

��


