Parse Your Options

S. Doaitse Swierstra and Atze Dijkstra

Dept. of Computer Science, O.O. Box 80.089, 3508 TB Utrecht, the Netherlands
http://www.cs.uu.nl

Abstract. We describe the development of a couple of combinators
which can be used to run applicative style parsers in an interleaved way.
In the presentation we advocate a scheme for choosing identifier names
which clearly shows the types of the values involved, and how to compose
them into the desired result. We finish with describing how the combina-
tors can be used to parse command line arguments and files containing
options. .

Key words: Parser combinators, Haskell, Parallel parsing, Option pro-
cessing, Permutation parsing

1 Introduction

In the original version of the uulib! parsing combinator library we introduced
two modules which provide combinators for parsing more complicated input
structures than those described by context free languages. For the sake of com-
pleteness we repeat the definition of the class Applicative which introduces a
combinator <*> that combines two side-effecting functions into a single function.
The important observation is that the results of running the two components are
combined by applying the result of the first to that of the second. In this paper
such functions will be parsers. The <*> operator is a function which runs its two
parser arguments sequentially on the input: i.e. the second parser takes off in
with the input state in which the first one has finished. The class Alternative in-
troduces the companion operator <|> which runs either one of its operands, but
not both. Its unit element is empty, which is not a parser which will recognise the
empty string but the parser which will always fail. For the sake of completeness
we also provide the Functor class.

class Functor f where
fmap:(b—a)—=fb —fa

class Applicative f where
(<x>)if(b—>a)—>fb—>fa
pure ::a —fa

class Alternative f where

! http://hackage.haskell.org/package/uulib

2 S. Doaitse Swierstra and Atze Dijkstra

<I»)sfa—=fa—fa
empty :: f a

We introduce a couple of helper functions that are used to modify the result of
a parser, or to throw away a result in which we are not interested:

(<$>) :: Functor f = (b—a) = fb—fa
(<$>) = fmap

p<xq = const <$> p<x>q

f<$p = fmap (const f)p

p*>q = flip const <$> p <*> ¢

p ‘opt' a = p<|>pure a

In addition to the operator for sequential composition <*> we defined [1] a
permuting combinator, with the same type:

<||>::Parser (b — a) — Parser b — Parser a

This operator also recognises both its operands, but irrespective of the order in
which they occur in the input stream, i.e. we may either run its left operand
and have its right operand take off where the first one finished or the other way
around.

Using this new combinator we can construct parsers which recognise input
in which the components are possibly permuted. Examples of such uses abound:
the order of the fields in a BIBTRX entry is not fixed, nor is the order of the
specification of the field values in a Haskell record fixed. Suppose we have defined
the type:

data Cart = Cart {x : Float;y :: Float}
| Polar {rho :: Float; phi :: Float }

Now one might want to be able to read both Cart{x=1,y=2} as well as
Cart{y=2,x=1} from the input; if a Haskell compiler accepts both representa-
tions, why shouldn’t we be able to read both these representations from the
input? Using the <| |> parser this is easily achieved (mkG and sepBy are helper
functions to which we will come back later):

pTwoFloats op constr sl s2
= pToken constr x> pCurly ((op <$> pField s1 pFloat
<||> pField s2 pFloat)

‘sepBy‘ pSym ’,’

pField s p = mkG (pToken s x> pSym =’ %> p)

pCurly p = pSym ’>{’ *> p <x pSym *}’

pCart = pTwoFloats Cart "Cart" "x" '"y"
<|> pTwoFloats Polar "Polar" "rho" "phi"

We [3] furthermore defined a combinator <+> which makes it possible to con-
struct parsers which recognise merged lists. In parser int_low the listOf function

Parse Your Options 3

converts a parser to a parser which may run interleaved with other parsers and
recognises a list values accepted by its argument parser, the function <+> runs
both arguments in an interleaved mode, and pMerged converts its argument back
to a normal parser again:

int_low :: Parser ([Int], [Char])
int_low = pMerged (listOf pInt <+> listOf pLower)

The function int_low accepts the input string "albc2" and returns the nested
pair ([1,2],"abc"); the input is split into two sub-streams which are each ac-
cepted by one of the two operands of <+>.

On closer inspection we see that the list merging parsers are a generalisa-
tion of the permuting parsers: just make sure that each of the merged lists has
precisely length 1 and list merging degenerates to permuting. This made us also
realise that the merging of lists was just a special case of merging any collec-
tion of structured sequences, which in its turn raised the question whether we
can define combinators which make it possible to describe this process, thus
generalising the two libraries just mentioned into a single one.

In this paper we present such a library. As we will see, this library can
be completely constructed using the basic Applicative and Alternative parser
combinators as e.g. provided by the uu-parsinglib package, without having
to deal with the intricate internals of the parsing process itself. Of course, A
direct consequence of choosing a feature rich library as wu — parsinglib is that
the merging parsers constructed on top of this inherit all its nice properties:
returning results in an online way, providing informative error messages, and
modify the input where parsing cannot proceed. In the rest of this paper we
will however put minimal requirements on the underlying parsing techniques;
we only require that it is possible to split a parser in two components: one which
recognises the empty sequence if the original parser can do so and one which will
take care of the non-empty cases.

Before we introduce our library we will give an somewhat larger example as
further motivation for the library to be derived. Finally, once we have introduced
our library we conclude with some code which, based on the just defined library,
facilitates the repetitive task of processing a file with options or processing com-
mand line arguments. We will see that in the end there is not much more work
left for the programmer than just enumerating the possible options and the way
they are to be denoted.

2 Parsing Log Files

As a motivation for our new combinators we start with a simple example of
their use. It deals with unraveling a file which was created by several concurrent
processes writing entries into it: each process indicates its start by writing out
a ’s’ character followed by its unique identity (numbers in the example), next
it will emit a couple of work entries each consisting of a ’>w’ character followed
by its process identity with the rest of the line containing log information, and

4 S. Doaitse Swierstra and Atze Dijkstra

it closes its sequence of entries with a line consisting of a >c’ character and its
process identity. So all entries generated by a single proces will be labeled with
the same process identity, which we will assume to be unique throughout the log
file. So an example input will be something like:

s2 -- start of process 2

s1 -- start of process 1

wl al -- first work entry of process 1
w2 b - first work entry of process 2
wl a2 -- second work entry of process 1
cl -- process 1 closes

s3 -- start of process 3

w8 ¢ -- first work entry of process 3
c2 -- process 2 closes

c3 -- process 3 closes

As a result we produce the following table:
[(IIQH’ [Ilbll])’ ("1", [llalll7 llazll])’ (nan’ [IICII])]

In the code we use names starting with a ¢ to bind to parsers which can run in
an interleaved way (which we will refer to as grammars from now on), whereas
names starting with a p refer to conventional parsers which recognise a consec-
utive segment of input. The function mkG converts a conventional parser to a
grammar; the result will still recognise a consecutive part of the input, but once
it has done so it may pass control on to a competing parser.

We start out by defining the grammar for the sequence of events for a single
process, using some of the basic parsers provided by common combinator libraries
providing an applicative interface, and subsequently use the function gmList to
concurrently run as many of them as needed. We have used a monadic bind
to use the process identity retrieved from the starting line in constructing the
parsers for the subsequent lines of this process. The function pMunch accepts
the longest prefix of the input which passes the passed predicate.

gLog = gmList gProcess

gProcess =do i <« mkG pStart
w < pMany o mkG $ pWork i
_ mkG $ pClose i

return (i, w)
pStart = pToken "s" *> pMunch (# ’\n’) <* pToken "\n"
pWork i = pToken (Pw’ :iH" ")
*> pMunch (Z ’\n’) -- read the rest of the line
<* pToken "\n"
pClose i = pToken (*c’ : i+ "\n")

Note that the order in which the work comes out is determined by the order
in which the left operands in the use of the gmList start: the elements are thus
ordered by the ordering of their first entry in the log file.

Parse Your Options 5

3 Merging Parsers

3.1 Representing parsers for merged input structures

As we have seen in the example, what we are looking for is the possibility in-
terleave parsers; one can think of this as associating a separate colour with each
parser and splitting up the input in a series of coloured segments, and mak-
ing that the concatenation of segments of the same colour is accepted by its
correspondingly coloured parser.

The question to answer is how to split the input into uniformly coloured
segments, i.e. how to find the points in the input where colour switching is to
take place and what to colour to give to the segments. In order to be able to do
so efficiently we have decided to construct our interleaving parsers out of basic
parsers, which are conventional parsers which recognise a consecutive part of the
input. We rephrase our use of the word grammar to stand for a description of a
parser which can pause at a colour switch and continue when the input switches
back to its colour again. Such grammars can thus be run in a competing fashion.
We will use the word parser to refer to something which recognises a uniformly
coloured segment of the input.

Once a parser gets hold of the input, and has successfully started parsing,
we will let this parser run until completion. Once it has completed, all pending
grammars (including the grammar for which the parser which just ran forms a
constituent) can again try to continue to parse. A consequence of this choice is
that at any point in the input where we may switch between grammars each
of the competing grammars should present its first-parsers, i.e. those parsers
which are candidates for accepting the next uniformly coloured segment.. These
presented first-parsers play a similar role as the first sets resulting from an LL(1)
grammar analysis; the only difference is that we compute the collection of first-
parsers instead of the set of first symbols.

A very important issue we have to take care of is unwanted ambiguity. Sup-
pose we have the following permuting parser:

pMaybe s = pToken s ‘opt‘ ""
pAmb = (,) <$> pMaybe "A" <||> pMaybe "B"

and our input consists of the string "A" then this may lead to unwanted or
unexpected behaviour if we do not take any further precautions: there are two
different ways in which the empty string "" can be seen as part of the input:
" A" and "A"H"". Thus when running the parser pAmb on the input string
"A" there are two possible parses, both returning the same result. Unless our
underlying parsing library somehow knows how to deal with ambiguous parsers
this will lead to an error message or a rather arbitrary choice of one of the
possible parses. Even if the library could handle ambiguity it may not be able to
discover that both rsults are the same. This problem has already been described
in the development of the permuting combinators [1] and the solution we take
here is based on a similar assumption as we have chosen there: we assume that
we are able to split a parser in a part recognising the non-empty part and one

6 S. Doaitse Swierstra and Atze Dijkstra

recognising the possibly empty part. The latter will be represented by the value
that is to be returned as as a witness in case the parser accepts the empty input
(denoted as € from now on). In order to make this explicit in our interface we
introduce a class:

class Splittable f where
getNonPure :: f a — Maybe (f a)
getPure = f a— Maybe a

where we will assume the following equality to hold for any Applicative and
Alternative functor f:

f = maybe empty id (getNonPure f) <|> maybe empty pure (getPure f)

We are now reday to define the data type Gram which we use to represent
grammars. It allows us to compute, for each possible splitting point in the input,
the collection of parsers that can continue at that point, provided that the input
allows this. We start out by defining a data type Alt which has a constructor Segq
which explicitly represents the splitting of the grammar into in a first-parser to
be run and “the rest of the work to be done”. Since we also want our grammars
to have a monadic interface we equip our data type Alt a Bind alternative, which
again explcitly contains the first-parser to be run:

data Alt f a = forall ¢.(f (¢ — a)) ‘Seq* (Gram f ¢)
| forall c.(f ¢) ‘Bind‘ (¢ — Gram f a)

Based on the data type Alt we now define the data type Gram. It contains
two components: a value of type [Alt f a] which is the alternation (choice) of
all non-empty parts jointly accepting a non-empty sequence of symbols, and a
Maybe a value representing the value to be returned in case € is accepted:

data Gram f a = Gram [Alt f a] (Maybe a)

The type parameter f corresponds to the conventional, non-interruptible parsers,
which we use as building blocks for our grammars.

3.2 Defining the various class instances for Gram

We will now define the instances for these newly introduced data types for the
classes Functor, Applicative, Alternative and Monad.

Gram is a Functor We start with the instances for Functor for both the data
type Gram and Alt. The code is straightforward:

instance Functor f = Functor (Gram f) where
fmap b2a (Gram I, mp) = Gram (map (b2a<$>) l) (b2a <$> my)

instance Functor f = Functor (Alt f) where

Parse Your Options 7

fmap b2a (foop ‘Seq‘ go) = ((b2a0) <$> feop) ‘Seq’ g
fmap b2a (f. ‘Bind* c2g,) = f. ‘Bind‘ (Ac — b2a <$> c2g, c)

Here we have chosen a naming convention which makes the types of the
values involved explicitly visible in the program text: b2a holds a function value
of the type b — a, m; stands for a value of type Maybe b, [, stands for a list
of Alt f a values, f.gp is bound to a value of type f (¢ — b), g. is bound to a
value of type Gram f ¢ and c2qg, to a value of type ¢ — Gram b. Now it is easy
to see that fmap b2a (fc ‘Bind‘ c2g,) should result in a value of type Gram a,
etc. Note that applying fmap maintains the invariant that the first-parser can
be easily recognised for each Alt intact. We have chosen to use <$> as an alias
for fmap in this code wherever possible, since this makes the names chosen even
more helpful in the representation of the code.

Gram is an Applicative functor We want to construct our merging parsers
in just the same way as we construct normal parsers, using the well known
Applicative and Alternative interfaces [4]. Since our data types enforce the prop-
erty that we can easily identify the first-parser to be used this is where the real
work takes place. The pattern we follow however is very common, and well known
from various process algebras and given in Figure 1. The first-parsers in the Seq
and Bind constructs of the left-hand side operand are “rotated” out. The hard
work is done by the function fwdby which combines the remaining part of the
Seq and Bind constructs to form the new right-hand side of the Seq and Bind
construct in the result. The ¢g. and g, grammars of a Seq are ran returning a
value of type (c¢,b). We modify the value returned by the first-parser, by ap-
plying uncurry to it, to accept this pair of values instead of getting passed the
two arguments individually. If the left-hand side parser can recognise the empty
input then also the first-parsers of the right-hand side grammar are first-parsers
of the resulting grammar since they can start to accept part of the input. This
explains the second component in the definition of the Alts f b in the right-hand
side of the <*> definition, where we use the witness value of type b — a to
update the result of the right-hand side parser. The definition of pure speaks
for itself: we have no non-empty alternatives, and the parser can recognise the
empty input with a witness of type a.

A subtle point is that we had to add an irrefutable pattern match (~) to the
right-hand side operand of <*>, since otherwise the pattern matching creates an
endless loop in situations like the definition of pMany when f instantiated with
some Gram g:

pMany p:: f a— f [a]
pMany p = let result = (:) <$> p <*> result ‘opt* [] in result

Here <*> does not have access to the top-level constructor in its right-hand side,
since this constructor is produced by this very call to <*>. Note that the call to
<*> is evaluated lazily, so we have no problems with recursive grammars. The
unrolling of these definitions is done on a by-demand basis during the actual

8 S. Doaitse Swierstra and Atze Dijkstra

instance Functor f = Applicative (Gram f) where
pure a = Gram [] (Just a)
Gram lyze Mpga <*> ~g,@Q(Gram I, my)
= Gram (map (‘fwdby‘gy) lvga
H
[02a <$> fi | Just b2a < [muza], fo < bb]
) (mpga <> my)
fwdby :: Functor f = Alt f (b — a) » Gram f b — Alt f a
(fezbza ‘Seq* ge) “Sfwdby* gy = (uncurry <$> fozpza) ‘Seq ((,) <$> ge <*> gy)
(fe ‘Bind‘ c2g,,,) ‘fwdby gy = fe ‘Bind* (Ac — c2g,,, ¢ <*¥> gp)
uncurry f (z,y)=fzy
instance Functor f = Alternative (Gram f) where
empty = Gram []| Nothing
Gram ps pe <|> Gram ¢s ge = Gram (ps 4 g¢s) (pe <|> ge)

Fig. 1. Gram is a member of the Applicative and Alternative classes.

parsing process. This technique resembles the parallel parsing strategy as devel-
oped by Claessen [2] and code also bears close resemblance to the computation
of the firsts set, as described by Swierstra and Duponcheel [5].

In case the left-hand side is a monadic construct we just use the original
first-parser f,, and again move the right-hand side ¢2g,,, of the left operator to
the right-hand side of the result, where it is composed with the original right
hand side using <*>.

Gram is an Alternative functor The instance for Alternative is almost
trivial: we concatenate the list of alternatives from both operands. This leaves
the question what to do if the grammar is ambiguous, caused by both alternatives
to be able to accept € . We have chosen to use the left-biasedness of <*> as defined
for Maybe to choose the left value to return. The code is given in figure 1.

Gram is a Monad The next thing we want to do is to equip our grammars with
a monadic interface, which we again achieve by “rotating” all but the first-parser
to the right so the first-parser again is presented at the top level constructor.
In the case of a ‘Seq‘ construct as the left argument of >= we split its monadic
effect into two steps: in the first step we make the first part if the left-hand
side operand explicitly visible in the resulting ‘Bind‘ construct, whereas the
corresponding right-hand side g. of the ‘Seq‘ part is, once it has been combined
using Ac2b — ¢2b <$> g. with the result c2b of the left-hand side of the ‘Seq
in another call to == in the right-hand side of the resulting top level ‘Bind'
constructs.

When the left-hand side accepts € we have to take some extra precautions,
since in this case the first-parsers created by a call to right-hand side compete
for input too, since they too may accept input at this point. Since we have the

Parse Your Options 9

witness of this empty left-hand side available, we can use it to compute the
Gram a value returned by the right-hand side of >=, and with this its first-
parsers become available too and can take part in the competition:

instance Functor f = Monad (Gram f) where
return a = Gram [] (Just a)
Gram ly mp >= b2g, = case m; of
Nothing — Gram (map (‘bindto‘b2g,) ly) Nothing
Just b — let Gram I, mq = b2¢g, b
in Gram (map (‘bindto‘b2g,) ly H l,) mq
bindto :: Functor f = Alt f b — (b — Gram f a) = Alt f a
(fe2n “Seq’ g¢) ‘bindto‘ 029, = feop ‘Bind‘ Ac2b — ¢2b <$> g. >= b2¢,
(f. ‘Bind‘ c2g,) ‘bindto‘ b2g, = f. ‘Bind‘ e — c2g, ¢ >=b2g,

Constructing elementary Gram values The last thing we have to do is to
show how we can lift a parser into an equivalent Gram

mkG :: Splittable f = f a — Gram f a
mkG p = Gram (maybe [] (Ap — [(const <$> p) ‘Seq‘ pure ()]) (getNonPure p))
(getPure p)

At first sight this code looks more complicated than strictly needed; this is
caused by our choice of the Alt data type. We could have easily added a third
case Single (f a) to this data type, and have used this Single constructor here.
We have chosen for the current, minimalistic approach, in which this Single data
type is encoded as a parser which is to be followed by an € parser returning ()
the result of which is subsequently discarded. This adds a small constant-time
overhead to our parsers, which we think is acceptable in return for the increased
simplicity of the code.

3.3 <II> and «II>

In the previous subsections we have defined the data type Gram f a, have shown
how to lift elementary parsers to this structure, and have defined instances for
this type for the Functor, Applicative, Alternative and Monad classes. As a
final step we now define the <| |> combinator, which describes the “interleaved”
composition of two grammars. We will however express this combinator in terms
of an even more primitive combinator <<| |>:

infixl 4 <||>
infixl 4 <<| |>

(<11>), (<<11>) :: Gram (b — a) — Gram b — Gram a

Note that we have given these operators the same type as the conventional <>
combinator, since we very much like the applicative interface for describing how

10 S. Doaitse Swierstra and Atze Dijkstra

to combine the two accepted values into the result. The reason, of course, that
we cannot use the <*> combinator is that it has already been used to express the
more conventional sequential composition of two Gram values.

The idea of the <<| |> combinator is that it will run one of the first-parsers of
its left-hand side operand on the input first, and from that point on will behave
like <I >, which does not have a preference for either of its operands to start
accepting input. We can easily define <| |> in terms of <<||>:

Ib2a <I1>gp = go2a <<I1>gp
<> flip (8) <$> g <<I1> gp2a

Here we see that the resulting parser will either run one of the first-parsers
from its left-hand side operand or one of the first-parsers of its right-hand side
operand. In case both grammars can accept € we get the same witness value
twice, and in principle our grammar becomes ambiguous; the biased choice of
the Maybe instance of Alternative throws away one of these two (equal) values.
So all we have to do now is to define <<||>. We construct a new grammar
which has as its first-parsers all the first-parsers of its left-hand side operand:

(<<11>) :: Functor f = Gram f (b — a) = Gram f b — Gram f a
920 Q(Gram lyaq mp2a) <<I 1> ~g,Q(Gram _ my)
= Gram (map (‘fwdby’ gp) lb2a) (Mp2q <*> mp)

(feobza ‘Seq gc) ‘fwdby'* gy = (uncurry <$> foop2q) ‘Seq’ () <$> ge <11> gp)
(f ‘Bind‘ c¢2g,4,) ‘fwdby'* g, = fc ‘Bind‘ (Ac = ¢2g45, ¢ <11> gp)

Notice that this code is almost the same as that for the definition of <*>; only have
the occurrences of <*> in the right-hand sides of the fwdby function been replaced
by <I1>, thus indicating that thus constructed parsers should run interleaved
instead of sequentially.

3.4 Converting Grammars into Parsers

The only thing left to do now it to show how to construct a real parser from a
Gram structure. We will require that the parameter f we have carried around
thus far has instances for the usual Applicative, Alternative and Monad inter-
faces, so we can use the functions available from these classes in this process.
For each of the alternatives we select the first-parser from it, use <|> to select
one of these to run, and after that either combine its result using <*> with the
parser generated from the corresponding Gram value in the case of a ‘Seq‘, or
use it as an argument to the right-hand side operand in the case of a ‘Bind‘ and
convert this result again into a proper parser.

mkP :: (Monad f, Applicative f, Alternative f) = Gram f a — f a
mkP (Gram l, mg) = foldr (<I>) (maybe empty pure my,)
(map mkP_Alt 1,)
where mkP_Alt (fy2a ‘Seq‘ gp) = fpoq <*> mkP gy
mkPrAlt (f, ‘Bind‘ b2g,)=1fy, >=(mkPob2g,)

Parse Your Options 11

3.5 Inserting separators

As we have seen in the pCart example it is a common case that the elements
which we want to recognise, and which occur in a permuted order are separated
by e.g. a >;? or a ’,’. For these cases we have introduced a special version of
mkP, which takes an additional argument telling how to parse a separator. The
hard work is done by a function insertSep which prefixes each parser, except the
first one, in the Gram parameter by the parser that recognises the separator:

sepBy :: Applicative f = Gram f a - f b — f a

sepBy g sep = mkP (insertSep sep g)

insertSep :: (Applicative f) = f b — Gram f a — Gram f a

insertSep sep (Gram l, mg :: Gram f a) = Gram (map insertSepInAlt 1,) m,

where

insertSepInAlt (froq ‘Seq‘ gp) = fooa ‘Seq prefixSepInGram gy,
insertSepInAlt (fy ‘Bind‘ b2g,) = f» ‘Bind* (insertSep sep o b2g,,)
prefixSepInGram (Gram l, mg) = Gram (map prefizSepInAlt 1,) m,
prefizSepInAlt :: Alt f b — Alt f b
prefirSepInAlt (foza ‘Seq* gy) = (sep *> foza) ‘Seq* prefizSepInGram gy

Because we are making use of polymorphic recursion we had to insert a few
type annotations in the code.

3.6 Parsing merged lists

Although the combinators follow the common interfaces, there are a few tricky
points one has to keep in mind when using them. The fact that the interleaved
parsers compete for input may lead to some complications one should be aware
of. We take a look at the traditional definition of pMany, which converts a parser
into a parser which recognises a list of elements recognised by its argument
parser:

pList p =let pmp = (:) <$> p <*x> pmp ‘opt‘ [] in pmp

In this definition the recursive call to pmp only starts to play a role once the first
instance of p has succeeded. If we however replace the <*> operator by a <|[>
operator, then the recursive pmp can start to parse immediately too, and will
spawn yet another instance of p which starts to compete for the input and so on
recursively; apparently changing sequential execution by interleaved execution
has deeper implications than is directly visible from the code. Fortunately this
problem can be solved rather easily: we decide to only start with a new instance
of pmp competing for the input, once p has started its work and has comsumed
a bit of input. Hence we define:

gmList p = let pmp = () <$> p <<||> pmp ‘opt* [] in pmp

We see here that the availability of <<| |> plays an essential role in this definition;
in that sense it is more primitive than <||>, which was expressed in terms of
<< |>.

12 S. Doaitse Swierstra and Atze Dijkstra

4 Applications

In this section we will give two examples of the use of the introduced merging
combinators.

4.1 Parsing options

One of the most boring tasks in writing an application is the processing of the op-
tions passed on the command line. Although there are some packages and tools to
make one’s life a bit easier, there always remains a lot of work to be done. Usually
conversion from the strings which were passed to the kind of values one is really
interested in has to be done explicitly, for optional arguments defaults have to be
provided, for required arguments we have to check that they have actually been
provided, and there are many conventions for passing the options, be it in short
form as in 1s -1, in long form as in haddock --enable-documentation, in a
kind of key-value pair as in process -o outputfile or process -o=outputfile,
etc. We will now present a small collection of combinators which completely takes
away this burden from the programmer, using the introduced merging parser
combinators.

We start out by assuming that in our program we want to put our recognised
options in a record with named fields. Using Template Haskell we generate lenses
to give us access to the individual fields. As an example we define the following
data types and example record:

import Data.Lenses
import Data.Lenses. Template
data Prefers = Clean | Haskell deriving Show
data Address = Address { city_:: String, room_:: String }
deriving Show
data Name = Name {name_:: String, prefers_:: Prefers,ints_:: [Int]
, address_ :: Address }
deriving Show

$ (deriveLenses >’ Name)

$ (deriveLenses *° Address)

$ (deriveLenses *° Prefers)

defaults = Name "Doaitse" Haskell [] (Address "Utrecht" "BBL517")

The deriveLenses calls to template Haskell generate code which will give us read
and write access to the fields which a name which ends in an ’_’. What is
precisely generated does not matter too much here, but what is important is
that the imported packages provide amongst others a function alter which can
be used to update a field of type a pointed at by the first parameter in a record
of type r by applying the passed function of type a — a to it:

alter :: MonadState a m = (m () — StateT r Identity b) — (a — a)
= (r—r

—~
~—

Parse Your Options 13

Now we can update the record at say the field clean as follows:

> print ((prefers ‘altert (const Clean)) defaults)
> Name {name_ = "Doaitse", prefers_ = Clean, ints_ =[],
address- = Address { city- = "Utrecht", room_= "BBL517" } }

So the important thing to remember is that an expression a ‘alter‘ f applies the
function f to a field pointed at by the lens a.

The first thing we do is to define a function oG, which stands for optionGrammar,
which takes a normal parser p which parses a single option and modifies the
parser such that a function f is applied to its result, and finally uses the passed
lens to apply this result to the field pointed at by the lens:

oG p a = mkG ((a‘alter®) <$> p)

Using this code we can define an option parser which recognises a required option
which takes a single extra parameter, such as e.g. filename.

required_ a f (string, p)
= oG (f <$ pSymbol ("-" + [head string]) <x> lezeme p) a
<> 0G (f <$ pSymbol ("--" +H string H " ") <*> lezeme p) a
<> oG (f <$ pSymbol ("--" H string H "=") <*> lezeme p) a

required a string_p = required_ a const string_p

The call required "filename" pFileName inp will construct a grammar which is
able to recognise one occurrence of the three possible forms of passing an option:
-f inputfile, --filename inputfile and --filename=inputfile, and will
update the field with name inp in the record which will hold our recognised
options. The parser pFilename will recognise the file name part of the option.
Using this basic parser for a single option we can now define special versions
of it. The function option makes the required field optional, as its name suggests.
The function flag recognises an option which does not take an extra argument,
but returns const True as result, which can be used to switch a field to True:

option a string_p = required a string_p ‘opt‘ id
flag a (string,v) = option a (string, pure v)
flags a table = foldr (<>) (pure id) (map (flag a) table)

At this point one may say that the code we have presented thus far does not
really depend on the fact that we have introduced grammars, and could have
been implemented using the permutation parsers which have been available for
a long time (see e.g. the options-applicative or the uu-parsinglib packages
on hackage). We now come to the point where our somewhat more involved
combinators will start to pay of. In the example record we see that we have a
field which holds a list of integers, and wouldn’t it be nice if these integers could
each be specified by a separate item in the list of options? For this we define the
functions:

14 S. Doaitse Swierstra and Atze Dijkstra

options a string_p = pFoldr ((o),id) (required_ a (:) string_p)
optionsl a string_p = (lasto) <$> options a string_p
optionsf a string_p = (heado) <$> options a string_p

Use of each of these functions will make that several settings, distributed over
the total list of options, will be recognised and combined into a value for a single
field, to which they will be prepended. The functions optionsl and optionsf select
the last, respectively the first element of this list. They can be used in the case
where the same option may be set several times and we want to use the last
setting or the first one. This may come in handy when the total list of options
consists of e.g. a sequence of options as typed on the command line concatenated
with a list of options taken from some preferences file.

Finally we want to be able to define the options for the Address field which
is part of our Name record holding the recognised options. Using lenses this
becomes extremely easy again. We recognise a list of options, and apply these
to a specific field of the parent record pointed at by the passed lens:

field s opts = (s‘alter*) <$> opts

So now we are finally ready to show how the specification of the option parser
for our name record may look like (note that the order in which we specify the
options does not matter):

instance Functor f = Monoid (Gram f (r — r)) where
mappend p ¢ = (0) <$>p¢q
mempty = empty
flags table a = foldr (<>) (pure id) [flag text val a | (text, val) < table]
oName = name ‘option‘ (
<>ints ‘options‘ (
<> prefers ‘flags |

"name", pString)

"int", pNatural)

("clean", Clean)

, ("haskell", Haskell)]

<> address ‘field* (city ‘option‘ ("city", pString)
<> room ‘option‘ ("room", pString)

)

By making values of type Gram f (r — r) an instance of the class Monoid, by
defining mappend as the merge of the two parameters, and composing the record
updating functions returned by both parameters when used as parser, we can
use the nice <> notation to combine the options. We can now finally run our
options as follows:

run (($ defaults) <$> mkP oName)
"--name=Rinus --int=7 --city=Nijmegen -i 5 --clean -i3"
-- Result: Name { name_ = "Rinus"
, prefers_ = Clean
, ints_ = [7,5,3]
, address_ = Address { street_ = "Nijmegen"
, room_ = "BBL517"}}

Parse Your Options 15

Note that the specifications for the nested Address field appear distributed
among the rest, and that all the integers we have specified end up together
in the ints field.

In the definition of the derived combinators used for specifying specific vari-
ants of options we have chosen to use lenses, which return a function which
updates an already existing structure containing the values to be collected. The
advantage of this approach is that we may start with a record containing the
default values and apply the result of reading a preferences file to it, and next
apply on top of that the extra information parsed from the command line. Note
that each of these structures can be easily parsed using the newly introduced
combinators, be it using parsers described in an applicative style or using lenses,
which correspond more closely to the familiar keyword-value way of specifying
parameters.

4.2 Nested options

It is not unfamiliar to pass options for a linker that is to be involved in a later
stage on the command line of a compiler. One of the problems which may arise
from such an option architecture is that the option specifications of otherwise
rather independent programs may start to interfere; is e.g. the —-verbose op-
tion passed to a module installer like cabal meant for the installer itself, or for
the haddock program that is used to generate the associated documentation?
This problem can be easily solved by requiring these options to be surrounded
by +haddock and -haddock markers on the command line, and specifying the
command line parser as follows:

pHaddock = (gList o mkG) (pToken "+haddock"
*> mkP (<haddock options>)
<* pToken "-haddock"

)

5 Conclusions

We have derived a set of very general combinators which make it possible to
unravel merged input structures. The library imposes very few restrictions on
the underlying parser combinators used. A distinguishing feature of our combi-
nators is that they extend beyond the now common parsers used for permuted
structures. Our new combinators have both a monadic and an applicative in-
terface. By being able to switch between the sequential and the merging view
on the input we can recognise permuted structures which are embedded inside
other permuted structures. In this way we may specify options for various differ-
ent subsequent program stages, where the option structures for these programs
would otherwise conflict.

In deriving the library we found it very helpful to choose our identifiers in
such a way that the types are explicitly represented in the chosen identifiers.

16 S. Doaitse Swierstra and Atze Dijkstra

As we will see his greatly helps in identifying the way we can construct the
needed values out of the available values. Choosing the identifiers in the way
we did greatly helped us in writing the code, and is an essential ingredient in
applying the programming paradigm in which we “Let the types do the work”.
Our experience in programming in this way helped us so much, how trivial this
observation may seem, that we think it deserves being pointed at explicitly rather
than just being used in the construction of this library.

6 Acknowledgement

We want to thank Bastiaan Heeren and members of the Software Technology
reading club for commenting on earlier versions of this paper.

References

1. Baars, A.L., Loh, A., Swierstra, S.D.: Parsing permutation phrases. J. Funct.
Program. 14(6), 635-646 (2004)

2. Claessen, K.: FUNCTIONAL PEARL Parallel Parsing Processes. Journal of
Functional Programming 14(6), 741-757 (2004)

3. Guerra, R., Baars, A.L., Swierstra, S.D., Saraiva, J.: Preserving order in non-order
preserving parsers. Tech. Rep. UU-CS-2005-025, Department of Information and
Computing Sciences, Utrecht University (2005)

4. McBride, C., Paterson, R.: Applicative programming with effects. Journal of
Functional Programming 18(01), 1-13 (2007),
http://portal.acm.org/citation.cfm?id=1348940.1348941

5. Swierstra, S.D., Duponcheel, L.: Deterministic, error-correcting combinator
parsers. In: Launchbury, J., Meijer, E., Sheard, T. (eds.) Advanced Functional
Programming. LNCS-Tutorial, vol. 1129, pp. 184-207. Springer-Verlag (1996)

