Thanks Alexander and Tran,So I went through the whole process of defining newtype, but it was quite a long process. My code below.Surely it would make more sense if the HashMap monoid were defined in terms of the monoid of its value type?In that case you could choose the monoid for the value to take the left value, which would be the equivalent of the current behaviour.Cheers,-Johnimport qualified Control.Applicative as Aimport Data.Hashableimport qualified Data.HashMap.Lazy as Mimport Data.Monoidnewtype HashMap k v = HashMap (M.HashMap k v)instance (Eq k, Hashable k, Monoid v) => Monoid (HashMap k v) wheremempty = emptymappend (HashMap a) (HashMap b) = HashMap (M.unionWith mappend a b)empty :: HashMap k vempty = HashMap M.emptysingleton :: Hashable k => k -> v -> HashMap k vsingleton k v = HashMap (M.singleton k v)null :: HashMap k v -> Boolnull (HashMap m) = M.null msize :: HashMap k v -> Intsize (HashMap m) = M.size $ mmember :: (Eq k, Hashable k) => k -> HashMap k a -> Boolmember k (HashMap m) = M.member k mlookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe vlookup k (HashMap m) = M.lookup k mlookupDefault :: (Eq k, Hashable k) => v -> k -> HashMap k v -> vlookupDefault v k (HashMap m) = M.lookupDefault v k m(!) :: (Eq k, Hashable k) => HashMap k v -> k -> v(!) (HashMap m) k = (M.!) m kinsert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k vinsert k v (HashMap m) = HashMap (M.insert k v m)insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v -> HashMap k vinsertWith f k v (HashMap m) = HashMap (M.insertWith f k v m)delete :: (Eq k, Hashable k) => k -> HashMap k v -> HashMap k vdelete k (HashMap m) = HashMap $ M.delete k madjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k vadjust f k (HashMap m) = HashMap $ M.adjust f k munion :: (Eq k, Hashable k) => HashMap k v -> HashMap k v -> HashMap k vunion (HashMap a) (HashMap b) = HashMap (M.union a b)unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k vunionWith f (HashMap a) (HashMap b) = HashMap (M.unionWith f a b)unions :: (Eq k, Hashable k) => [HashMap k v] -> HashMap k vunions ms = HashMap (M.unions [un m | m <- ms])where un (HashMap m) = m
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2map f (HashMap m) = HashMap (M.map f m)--mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2--mapWithKey f (HashMap m) = HashMap (M.mapWithKey f m)traverseWithKey :: A.Applicative f => (k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)traverseWithKey f (HashMap m) = HashMap `fmap` (M.traverseWithKey f m)difference :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k vdifference (HashMap a) (HashMap b) = HashMap (M.difference a b)intersection :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k vintersection (HashMap a) (HashMap b) = HashMap (M.intersection a b)intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3intersectionWith f (HashMap a) (HashMap b) = HashMap (M.intersectionWith f a b)foldl' :: (a -> v -> a) -> a -> HashMap k v -> afoldl' f v (HashMap m) = M.foldl' f v mfoldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> afoldlWithKey' f v (HashMap m) = M.foldlWithKey' f v mfoldr :: (v -> a -> a) -> a -> HashMap k v -> afoldr f v (HashMap m) = M.foldr f v mfoldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> afoldrWithKey f v (HashMap m) = M.foldrWithKey f v mfilter :: (v -> Bool) -> HashMap k v -> HashMap k vfilter f (HashMap m) = HashMap (M.filter f m)filterWithKey :: (k -> v -> Bool) -> HashMap k v -> HashMap k vfilterWithKey f (HashMap m) = HashMap (M.filterWithKey f m)keys :: HashMap k v -> [k]keys (HashMap m) = M.keys melems :: HashMap k v -> [v]elems (HashMap m) = M.elems mtoList :: HashMap k v -> [(k, v)]toList (HashMap m) = M.toList mfromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k vfromList kvs = HashMap (M.fromList kvs)fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k vfromListWith f kvs = HashMap (M.fromListWith f kvs)On 10 May 2014 16:07, Alexander V Vershilov <alexander.vershilov@gmail.com> wrote:
Hi, John.
You can always use newtype wrapper if you need to overload existing method behavior:
newtype MyHashMap a b = MyHashMap { unMy :: HashMap a b}
instance Monoid (MyHasMap a b) where
mempty = MyHasMap mempty
mappend a b = your_overloaded_functionThen just wrap and unwrap your data to do a custom mappend, also you can write a wrapper function, in case if you'll restrict types then it may work only for the types you need:
(<~>) :: HashMap Int (HashMap Int Int) -> HashMap Int (HashMap Int Int) -> HashMap Int (HashMap Int Int)
a <~> b = unMy $ (<>) `on` MyHashMap a b--
Alexander