
Generalized Algebraic Data Types in Haskell

Anton Dergunov

Intel Corporation

Abstract. Generalized algebraic data types (GADTs) is a feature of
functional programming languages that generalizes ordinary algebraic
data types by permitting value constructors to return specific types. This
article is a tutorial about GADTs in Haskell programming language as
they are implemented by the Glasgow Haskell Compiler (GHC) as a lan-
guage extension. GADTs are widely used in practice: for domain-specific
embedded languages, for generic programming, for ensuring program cor-
rectness, etc. The article describes these use cases with small GADT
programs and also describes usage of GADTs in Yampa programs.

Keywords: Haskell, functional programming, GADT

1 Introduction

Type systems are recognized as the most popular and best established lightweight
formal method for ensuring that software behaves correctly [1]. They are used for
detecting program errors, for documentation, to enforce abstraction, etc. Type
systems are an active research area and Haskell is considered to be a kind of lab-
oratory in which type-system extensions are designed, implemented and applied
[2].

This article is a tutorial about one such extension - generalized algebraic
data types (GADTs). The single idea of GADTs is to allow specific return types
of value constructors. In this way they generalize ordinary algebraic data types.
The theoretical foundation for GADTs is the notion of dependent types which
is extensively described in literature on computer science and logic [1].

GADTs are very useful in practice. Several examples of GADTs usage are
described in this article. But these examples are not new. They were taken from
[3–9] and many of them are already a part of Haskell folklore.

The contribution of this article is presenting a concise introductory-level tu-
torial on the concept and popular use cases of GADTs. A quick introduction to
GADTs is provided in section 2. The following use cases were described in this
article1:

– domain-specific embedded languages (section 3);
– generic programming (section 4);
– ensuring program correctness (section 5).

1 All examples in this article were tested with Glasgow Haskell Compiler, version 7.4.1.



Section 7 describes why type signatures are required for functions involving
GADTs. Section 8 describes an alternative implementation of one of the exam-
ples without GADTs usage. Section 9 describes usage of GADTs in Yampa, a
domain-specific language for functional reactive programming. Finally the con-
clusions are summarized in section 10.

2 GADTs in a Nutshell

Algebraic data types are declared using the data keyword:

data Test a = TI Int | TS String a

In the example above Test is called a type constructor. TI and TS are value
constructors. If a type has more than one value constructor, they are called
alternatives: one can use any of these alternatives to create a value of that type.
Each alternative can specify zero or more components. For example, TS specifies
two component: one of them has type String and another one - type a.

We can construct values of this type this way2:

ghci> let a = TI 10

ghci> :t a

a :: Test a

ghci> let b = TS "test" ’c’

ghci> :t b

b :: Test Char

Value constructors of the type Test have the following types:

ghci> :t TI

TI :: Int -> Test a

ghci> :t TS

TS :: String -> a -> Test a

Using GADT syntax we can define the Test data type as:

data Test a where

TI :: Int -> Test a

TS :: String -> a -> Test a

The GADTs feature is a Haskell language extension. Just like other exten-
sions it can be enabled in GHC by:

– Using command line option -XGADTs.
– Using LANGUAGE pragma in source file. This is the recommended way,

because it enables this language extension per-file. This pragma must precede
the module keyword in the source file and contain the following:

2 We use "ghci" to denote a prompt of GHCi session.



{-# LANGUAGE GADTs #-}

The power of GADTs is not about syntax. In fact, the single idea of GADTs
is to allow arbitrary return types of value constructors. In this way they gener-
alize ordinary algebraic data types. Of course, this return type must still be an
instance of the more general data type that is defined. We can turn the Test

data type into a full-power GADT for example this way:

data Test a where

TI :: Int -> Test Int

TS :: String -> a -> Test a

We have modified the TI value constructor to return value of type Test Int

and we can test this:

ghci> :t TI 10

TI 10 :: Test Int

The key feature of GADTs is that pattern matching causes type refinement.
In the right-hand side of the following equation the type of a is refined to Int:

f :: Test a -> a

f (TI i) = i + 10

Examples in the following sections show the real practical value of GADTs.

3 Expression Evaluator

This section introduces GADTs with a canonical example of expression evalua-
tor. At first, we attempt to implement it using ordinary algebraic data types. But
as we will see, GADTs allow a more elegant implementation of the evaluator.

We start with the following type of expressions involving addition of integers:

data IntExpr = IntVal Int

| AddInt IntExpr IntExpr

IntVal value constructor is used to wrap integer literal and AddInt is used to
represent an addition of two integer expressions. An example of such expression
is:

ghci> :t AddInt (IntVal 5) (IntVal 7)

AddInt (IntVal 5) (IntVal 7) :: IntExpr

Evaluation function for such expressions is easy to write:

evaluate :: IntExpr -> Int

evaluate e = case e of

IntVal i -> i

AddInt e1 e2 -> evaluate e1 + evaluate e2



Now we extend the type of expressions to support boolean values and some
operations on them:

data ExtExpr = IntVal Int

| BoolVal Bool

| AddInt ExtExpr ExtExpr

| IsZero ExtExpr

BoolVal value constructor wraps Boolean literal. IsZero is an unary function
that takes an integer and returns a Boolean value. One can immediately notice
a problem with this type: it is possible to write incorrect expressions that type
checker will accept. For example:

ghci> :t IsZero (BoolVal True)

IsZero (BoolVal True) :: ExtExpr

ghci> :t AddInt (IntVal 5) (BoolVal True)

AddInt (IntVal 5) (BoolVal True) :: ExtExpr

Evaluation function for such expressions is also tricky. The result of eval-
uation can be either an integer or a Boolean value. The type ExtExpr is not
parametrized by return value type, so we have to use type Either Int Bool.
Also, evaluation can fail, because the input expression is incorrect. Finally, type
signature is the following:

evaluate :: ExtExpr -> Maybe (Either Int Bool)

And implementation of this function is complicated. For example, processing
AddInt requires usage of a nested case:

evaluate e = case e of

AddInt e1 e2 -> case (evaluate e1, evaluate e2) of

(Just (Left i1), Just (Left i2)) -> Just $ Left $ i1 + i2

_ -> error "AddInt takes two integers"

The conclusion is that it is required to represent the expressions using val-
ues of types parametrized by expression return value type. Phantom type is a
parametrized type whose parameters do not appear on the right-hand side of its
definition [?]. One can use them this way:

data PhantomExpr t = IntVal Int

| BoolVal Bool

| AddInt (PhantomExpr Int) (PhantomExpr Int)

| IsZero (PhantomExpr Int)

Type t in this type corresponds to the expression return value type. For
example, integer expression has type PhantomExpr Int. But this type definition
alone is still not helpful, because it is still possible to write incorrect expressions
that type checker will accept:



ghci> :t IsZero (BoolVal True)

IsZero (BoolVal True) :: PhantomExpr t

The trick is to wrap value constructors with corresponding functions:

intVal :: Int -> PhantomExpr Int

intVal = IntVal

boolVal :: Bool -> PhantomExpr Bool

boolVal = BoolVal

isZero :: PhantomExpr Int -> PhantomExpr Bool

isZero = IsZero

And now bad expressions are rejected by type checker:

ghci> :t isZero (boolVal True)

Couldn’t match expected type ‘Int’ with actual type ‘Bool’...

ghci> :t isZero (intVal 5)

isZero (intVal 5) :: PhantomExpr Bool

Ideally we want the following type signature for evaluate method:

evaluate :: PhantomExpr t -> t

But we can’t define such function. For example, the following line produces
error ”Couldn’t match type ‘t’ with ‘Int’”:

evaluate (IntVal i) = i

The reason of this error is that value constructor IntVal return type is
Phantom t and t can be refined to any type. For example:

ghci> :t IntVal 5 :: PhantomExpr Bool

IntVal 5 :: PhantomExpr Bool :: PhantomExpr Bool

What is really needed here is to specify type signature of value constructors
exactly. In this case pattern matching in evaluate would cause type refinement
for IntVal. And this is what is exactly what GADTs do.

As described in the previous section, GADTs use a different syntax than
ordinary algebraic data types. In fact, value constructors specified by the data
type PhantomExpr can be written as the following functions:

IntVal :: Int -> PhantomExpr t

BoolVal :: Bool -> PhantomExpr t

AddInt :: PhantomExpr Int -> PhantomExpr Int -> PhantomExpr t

IsZero :: PhantomExpr Int -> PhantomExpr t

Using GADT syntax the data type PhantomExpr type can be declared this
way:



data PhantomExpr t where

IntVal :: Int -> PhantomExpr t

BoolVal :: Bool -> PhantomExpr t

AddInt :: PhantomExpr Int -> PhantomExpr Int -> PhantomExpr t

IsZero :: PhantomExpr Int -> PhantomExpr t

All value constructors have PhantomExpr t as their return type. As noted
in the previous section, the distinctive feature of GADTs is ability to return
specific types in value constructors, for example PhantomExpr Int. GADT for
the expression language looks this way:

data Expr t where

IntVal :: Int -> Expr Int

BoolVal :: Bool -> Expr Bool

AddInt :: Expr Int -> Expr Int -> Expr Int

IsZero :: Expr Int -> Expr Bool

If :: Expr Bool -> Expr t -> Expr t -> Expr t

Note that value constructors of this data type have specific return types.
Now bad expressions are rejected by the type checker:

ghci> :t IsZero(BoolVal True)

Couldn’t match expected type ‘Int’ with actual type ‘Bool’...

ghci> :t IsZero (IntVal 5)

IsZero (IntVal 5) :: Expr Bool

GADTs allow to write well-defined evaluate function:

evaluate :: Expr t -> t

evaluate (IntVal i) = i

evaluate (BoolVal b) = b

evaluate (AddInt e1 e2) = evaluate e1 + evaluate e2

evaluate (IsZero e) = evaluate e /= 0

evaluate (If e1 e2 e3) = if evaluate e1 then

evaluate e2 else evaluate e3

Pattern matching causes type refinement, so for example in the right-hand
side of the following expression i has type Int:

evaluate :: Expr t -> t

evaluate (IntVal i) = ...

Section 8 describes one more implementation of expression evaluator.



4 Generic Programming with GADTs

Suppose it is required to write a function to encode data in binary form3. This
function must be able to work with several types. Functions like this one can be
implemented using type classes. But GADTs offer an interesting alternative.

First we need to declare a representation type [4]:

data Type t where

TInt :: Type Int

TChar :: Type Char

TList :: Type t -> Type [t]

This is GADT with value constructors that create a representation of the
corresponding type. For example:

ghci> let a = TInt

ghci> :t a

a :: Type Int

ghci> let b = TList TInt

ghci> :t b

b :: Type [Int]

String type is defined in Haskell as a list of Char elements, so we can define
a value constructor for string type representation this way:

tString :: Type String

tString = TList TChar

The output of the encoding function is a list of bits where bits are represented
using:

data Bit = F | T deriving(Show)

The encoding function takes a representation of the type, the value of this
type and returns a list of bits.

encode :: Type t -> t -> [Bit]

encode TInt i = encodeInt i

encode TChar c = encodeChar c

encode (TList _) [] = F : []

encode (TList t) (x : xs) = T :

(encode t x) ++ encode (TList t) xs

We can test this function:

3 Ideas for this section were taken from [3].



ghci> encode TInt 333

[T,F,T,...,F,F,F]

ghci> encode (TList TInt) [1,2,3]

[T,T,F,...,F,F,F]

ghci> encode tString "test"

[T,F,F,...,F,F,F]

If we pair the representation type and the value together, we get a universal
data type, the type Dynamic4:

data Dynamic = forall t. Dyn (Type t) t

Above we have defined an existential data type which can also be represented
as a GADT:

data Dynamic where

Dyn :: Type t -> t -> Dynamic

Now we can declare a variant of encode function which only gets a Dynamic

type value as input:

encode’ :: Dynamic -> [Bit]

encode’ (Dyn t v) = encode t v

The following session illustrates the usage of this type:

ghci> let c = Dyn (TList TInt) [5,4,3]

ghci> :t c

c :: Dynamic

ghci> encode’ c

[T,T,F,...,F,F,F]

We can now define heterogeneous lists using the Dynamic type:

ghci> let d = [Dyn TInt 10, Dyn tString "test"]

ghci> :t d

d :: [Dynamic]

However, we can’t make this list a Dynamic value itself. To fix this prob-
lem, we need to extend the representation type: add a value constructor for the
Dynamic data type.

data Type t where

...

TDyn :: Type Dynamic

And also we need to update encode function to handle the Dynamic data
type:

4 This code requires using ExistentialQuantification extension.



encode :: Type t -> t -> [Bit]

...

encode TDyn (Dyn t v) = encode t v

Now we can represent a list of Dynamic values as a Dynamic value itself and
encode it:

ghci> let d = [Dyn TInt 10, Dyn tString "test"]

ghci> :t d

d :: [Dynamic]

ghci> let e = Dyn (TList TDyn) d

ghci> :t e

e :: Dynamic

ghic> encode’ e

[T,F,T,...,F,F,F]

The Dynamic data type is useful for communication with the environment
when we are not sure about the actual type of the data. In this case it is required
to use a type cast to get the useful data. A simple way to implement a type cast
from Dynamic data type to an integer is the following:

castInt :: Dynamic -> Maybe Int

castInt (Dyn TInt i) = Just i

castInt (Dyn _ _) = Nothing

A more generic solution is provided in [3].

5 Proving Correctness of List Operations

Lists can be represented using the following algebraic data type:

data List t = Nil | Cons t (List t)

or using GADT syntax as:

data List t where

Nil :: List t

Cons :: t -> List t -> List t

Now head function can be implemented this way:

listHead :: List t -> t

listHead (Cons a _) = a

listHead Nil = error "list is empty"

The disadvantage of this function is that it can fail if list is null. To address
this problem it is possible to define a type of non-empty lists. First it is required
to define two empty data types5:

5 This requires EmptyDataDecls extension.



data Empty

data NonEmpty

Now it is possible to define a list GADT:

data SafeList t f where

Nil :: SafeList t Empty

Cons :: t -> SafeList t f -> SafeList t NonEmpty

Parameter f takes type Empty when the list is empty and NonEmpty otherwise.
The function headSafe is a safe version of listHead function that only accepts
non-empty lists as its parameter.

headSafe :: SafeList t NonEmpty -> t

headSafe (Cons t _) = t

For example:

ghci> headSafe Nil

Couldn’t match expected type ‘NonEmpty’ with actual type ‘Empty’

ghci> headSafe $ Cons 1 $ Cons 2 $ Cons 3 Nil

1

But implementation of a function to repeat an element a given number of
times using SafeList data type is problematic: it is not possible to determine
return value type of this function.

repeatElem :: a -> Int -> SafeList a ???

repeatElem a 0 = Nil

repeatElem a n = Cons a (repeatElem a (n-1))

The root cause is that empty and non-empty lists have completely different
types. To fix this problem we can slightly relax Cons value constructor:

data SafeList t f where

Nil :: SafeList t Empty

Cons :: t -> SafeList t f -> SafeList t f’

Now SafeList t Empty is a type of possibly empty lists, for example6:

ghci> :t Nil

Nil :: SafeList t Empty

ghci> :t Cons ’a’ Nil

Cons ’a’ Nil :: SafeList Char f’

ghci> :t Cons ’a’ Nil :: SafeList Char Empty

Cons ’a’ Nil :: SafeList Char Empty :: SafeList Char Empty

ghci> :t Cons ’a’ Nil :: SafeList Char NonEmpty

Cons ’a’ Nil :: SafeList Char NonEmpty :: SafeList Char NonEmpty

6 Actually, with the current data type definition a term Cons ’a’ Nil can even be
given type SafeList Char Int. To fix this problem it is required to give same kind
for Empty and NonEmpty types. This is discussed later for Nat data type.



And we can define repeatElem as a function returning possibly empty lists:

repeatElem :: a -> Int -> SafeList a Empty

repeatElem a 0 = Nil

repeatElem a n = Cons a (repeatElem a (n-1))

But SafeList data type does not have enough static information to prove
list length invariants for list functions. For example, for concatenation function
we need to show that length of the concatenated list is a sum of source lists
lengths. So it is not enough to just know if a list is empty or not. We need to
encode the length of a list in its type.

The classical way to encode numbers at the type level is Peano numbers:

data Zero

data Succ n

Zero is encoded as Zero, one - as Succ Zero, two - as Succ (Succ Zero),
etc. Now list data type is defined as:

data List a n where

Nil :: List a Zero

Cons :: a -> List a n -> List a (Succ n)

Function headSafe can be defined as:

headSafe :: List t (Succ n) -> t

headSafe (Cons t _) = t

We can also show that reverse function does not change the length of a list:

reverseSafe :: List a n -> List a n

reverseSafe Nil = Nil

reverseSafe (Cons x xs) = Cons x (reverseSafe xs)

To implement concatenation function we need a type-level function for addi-
tion of Peano numbers. A natural way to implement such function is to use type
families [?]. First we need to declare type family Plus7:

type family Plus a b

Than we need to declare type instances that implement addition of Peano
numbers by induction:

type instance Plus Zero n = n

type instance Plus (Succ m) n = Succ (Plus m n)

The type family Plus that we have just defined can be used in concatenation
function signature:

7 This requires TypeFamilies extension.



concatenate :: List a m -> List a n -> List a (Plus m n)

concatenate Nil ys = ys

concatenate (Cons x xs) ys = Cons x (concatenate xs ys)

In fact, at the moment Succ has type parameter of kind *, so it possible to
write nonsensical terms like Succ Int, and they will be accepted by the type
checker. This problem can be addressed by promotion [10]. We can declare the
following data type:

data Nat = Zero | Succ Nat

Here Nat is a type and Zero and Succ are value constructors. But due to
promotion Nat also becomes a kind and Zero and Succ - also become types.
Where necessary, a quote must be used to resolve ambiguity. For example, ’Succ
refers to a type, not a value constructor. So, type-level representation of Peano
number 2 can be written as:

type T = ’Succ (’Succ ’Zero)

Quotes can be omitted in this case, because there is no ambiguity:

type T’ = Succ (Succ Zero)

As a result, type checker now rejects wrong terms like Succ Int.
The definition of the list data type can also be improved now to clearly

specify that the type of its second parameter has kind Nat8.

data List a (n::Nat) where

Nil :: List a ’Zero

Cons :: a -> List a n -> List a (’Succ n)

The implementation of the repeatElem function is more involved, because
now we can’t yet write its return type:

repeatElem :: a -> Int -> List a ???

repeatElem a 0 = Nil

repeatElem a n = Cons a (repeatElem a (n-1))

On the one hand, the count parameter must be passed as a value to populate
the list at run-time. On the other hand, we need a type-level representation
of the same number for List type. Haskell enforces a phase separation between
run-time values and compile-time types.

The solution to this puzzle is the use of singleton types which allow to express
dependency between values and types [5]. The singleton for Peano numbers type
is the following GADT:

8 This requires DataKinds extension.



data NatSing (n::Nat) where

ZeroSing :: NatSing ’Zero

SuccSing :: NatSing n -> NatSing (’Succ n)

The constructors of the singleton NatSing mirror those of the kind Nat. As a
result, every type of kind Nat corresponds to exactly one value (except ⊥ value)
of the singleton data type where parameter n has exactly this type. For example:

ghci> :t ZeroSing

ZeroSing :: NatSing ’Zero

ghci> :t SuccSing $ SuccSing ZeroSing

SuccSing $ SuccSing ZeroSing :: NatSing (Succ (Succ ’Zero))

Now function repeatElem can be defined this way:

repeatElem :: NatSing n -> a -> List a n

repeatElem ZeroSing _ = Nil

repeatElem (SuccSing n) x = Cons x (repeatElem n x)

In a function returning an element by index in the list we need to make sure
that the index does not exceed the list length. This requires a type-level function
to compute whether one number is less than the other. We define the following
type family and instances9:

type family (m::Nat) :< (n::Nat) :: Bool

type instance m :< ’Zero = ’False

type instance ’Zero :< (’Succ n) = ’True

type instance (’Succ m) :< (’Succ n) = m :< n

This type-level function is implemented using induction. It returns promoted
type ’True’ of kind Bool when first number is less than the second one.

Now the function can be defined this way:

nthElem :: (n :< m) ~ ’True => List a m -> NatSing n -> a

nthElem (Cons x _) ZeroSing = x

nthElem (Cons _ xs) (SuccSing n) = nthElem xs n

The tilde operation is an equality constraint. It asserts that two types in the
context are the same. Thus, is it only possible to use this function when the
index does not exceed the list length.

6 Proving Correctness of Red-Black Tree Insert
Operation

A red-black tree is a binary search tree where every node has either red or black
color10:
9 TypeOperators extension is required to be able to define :< operation for types.

10 The implementation of a red-black tree presented here is taken from [6].



data Color = R | B

data Node a = E | N Color (Node a) a (Node a)

type Tree a = Node a

N is a value constructor of a regular node and E is a value constructor for a
leaf node. As in all binary search trees, for a particular node N c l x r values
greater than x are stored in left sub-tree (in l) and values less than x are stored
in right sub-tree (in r). Membership function implements a recursive search:

member :: Ord a => a -> Tree a -> Bool

member _ E = False

member x (N _ l a r)

| x < a = member x l

| x > a = member x r

| otherwise = True

Additionally red-black tree satisfies the following invariants:

1. The root is black.
2. Every leaf is black.
3. Red nodes have black children.
4. For each node, all paths from that node to the leaf node contain the same

number of black nodes. This number of black nodes is called the black height
of a node.

These invariants guarantee that tree is balanced. Indeed, the longest path
from the root node (containing alternating red-black nodes) can only be twice
as long as the shortest path (containing only red nodes). Thus basic operations
(such as insertion) take O(log n) time in the worst case.

Insertion operation for red-black trees has the following structure:

insert :: Ord a => Tree a -> a -> Tree a

insert t v = blacken (insertInternal t v) where

insertInternal n@(N c l a r) x

| x < a = leftBalance (N c (insertInternal l x) a r)

| x > a = rightBalance (N c l a (insertInternal r x))

| otherwise = n

insertInternal E x = N R E x E

blacken (N _ l x r) = N B l x r

It has the same structure as insertion operation for regular binary search trees
which is implemented by recursive descent (down to leaf nodes) until a suitable
location for insertion is found. But additionally it must keep the invariants, so
there are the following differences:

– The node is inserted with red color. This allows to maintain the 4th invariant,
because the black height is not changed.



x z

a b c d

y

x

z

a b

c

d
y x

z

a

b c

d

y

red node

black node

Restructured tree

1st case of invariant violation 2nd case of invariant violation

Fig. 1. Possible cases of 3rd invariant violation after insertion in the left branch of the
node.

– To maintain the first invariant we call blacken at the end of insertion. Again,
the 4th invariant remains valid.

– To maintain the 3rd invariant we call leftBalance and rightBalance.

Figure 1 shows 2 possible cases when the 3rd invariant is violated after in-
sertion in the left branch of the node. To repair this invariant the tree must be
restructured as shown on the figure. The following code uses pattern matching
to implement the restructuring, otherwise the function returns the sub-tree as
is:

leftBalance :: Node a -> Node a

leftBalance (N B (N R (N R a x b) y c) z d) =

N R (N B a x b) y (N B c z d)

leftBalance (N B (N R a x (N R b y c)) z d) =

N R (N B a x b) y (N B c z d)

leftBalance n = n

The function rightBalance is similar.
We need to show that the 4th invariant is maintained by the insertion op-

eration11. This requires adding black height as a parameter of the Node data
type.

First we define Peano numbers in same way as before:

data Nat = Zero | Succ Nat

Then we turn Node into a GADT with a black height parameter:

data Node a (bh::Nat) where

E :: Node a ’Zero

N :: Color -> Node a bh -> a -> Node a bh -> Node a ???

11 The source code for the verified red-black tree was originally written by Stephanie
Weirich for a university course and was described in the talk [7].



The leaf node has black height 0. The definition of internal nodes requires
that both children have the same black height. The black height of the node itself
must be conditionally incremented based on its color. This is implemented using
the following type family which computes the new height based on the color of
the node and black height of its children. Both parameters are represented as
types (of Color and Nat kinds correspondingly)12:

type family IncBlackHeight (c::Color) (bh::Nat) :: Nat

type instance IncBlackHeight R bh = bh

type instance IncBlackHeight B bh = Succ bh

Now we see that color must be passed as a type (for IncBlackHeight type
family) and as a value (to the value constructor). So, similarly as in section 5,
we need to use a singleton type as a bridge:

data ColorSingleton (c::Color) where

SR :: ColorSingleton R

SB :: ColorSingleton B

The value of this singleton type is passed as a parameter to the node value
constructor and the color type is used for type family:

data Node a (bh::Nat) where

E :: Node a ’Zero

N :: ColorSingleton c -> Node a bh -> a

-> Node a bh -> Node a (IncBlackHeight c bh)

After we have added a new parameter for the Node data type, it is an error
to write:

type Tree a = Node a bh

Because normally when creating a new type in Haskell, every type variable
that appears on the right-hand side of the definition must also appear on its
left-hand side. One solution to this problem is usage of existential types13:

type Tree a = forall bh. Node a bh

Or it is also possible to do this with GADT:

data Tree a where

Root :: Node a bh -> Tree a

12 This code requires TypeFamilies and DataKinds extensions.
13 This definition requires extension RankNTypes.



The implementation of insertion operation never violates the 4th invariant,
so the remaining changes are adjustments of type annotations, etc.

Proving the 3rd invariant is more involved. First we need to specify valid
colors for a node on the type level. This can be done using type families as
before or using type classes. First we define a type class with 3 parameters
corresponding to color of the parent and colors of the child nodes14:

class ValidColors (parent::Color) (child1::Color) (child2::Color)

We do not need to define any functions in this type class, because our aim is
just to declare instances with valid colors15:

instance ValidColors R B B

instance ValidColors B c1 c2

The allowed nodes are:

– red nodes with black child nodes;
– black nodes with child nodes of any color.

We need to add color type as a parameter to the Node data type and restrict
it to have only correctly-colored nodes using the ValidColors type class:

data Node a (bh::Nat) (c::Color) where

E :: Node a ’Zero B

N :: ValidColors c c1 c1 => ColorSingleton c -> Node a bh c1

-> a -> Node a bh c2 -> Node a (IncBlackHeight c bh) c

With this change we also statically ensure the 2nd invariant: leaf nodes have
black color.

We also need to update the definition of the Tree data type to specify that
root node has black color (this way also ensuring the 1st invariant):

data Tree a where

Root :: Node a bh B -> Tree a

The implementation of the insertion operation can temporarily invalidate the
3rd invariant (see figure 1), so we will not be able to represent the tree using
this data type. Thus it is required to declare a data type similar to Node, but
without the restriction on node colors:

data IntNode a (n::Nat) where

IntNode :: ColorSingleton c -> Node a n c1 -> a

-> Node a n c2 -> IntNode a (IncBlackHeight c n)

14 This requires MultiParamTypeClasses extension.
15 This requires FlexibleInstances extension.



As before we need to make changes in type annotations of the functions
implementing insert operation. We also need to change the leftBalance function
type signature this way:

leftBalance :: ColorSingleton c -> IntNode a n -> a

-> Node a n c’ -> IntNode a (IncBlackHeight c n)

Earlier we passed the whole node as a parameter. But we can’t do it after the
Node data type was modified: the 3rd invariant could be violated due to insertion
in the left branch of the node. So, we pass all parameters of the parameters of
the node and left child is represented using IntNode data type.

Previous cases should be rewritten using new types:

leftBalance SB (IntNode SR (N SR a x b) y c) z d =

IntNode SR (N SB a x b) y (N SB c z d)

leftBalance SB (IntNode SR a x (N SR b y c)) z d =

IntNode SR (N SB a x b) y (N SB c z d)

However, now we can’t write the same catch-all case as before:

leftBalance c (IntNode c1 a x b) d n2 =

IntNode c (N c1 a x b) d n2

This case does not type-check with the following error: "Could not deduce

(ValidColors c1 c2 c2) ...". The reason is that the type of the left node
is IntNode, so even though we have previously balanced the left sub-tree, tech-
nically this is not reflected in the type. We need to explicitly match against
the correct cases and reconstruct node. First, we match against the black nodes
where children can have any color:

leftBalance c (IntNode SB a x b) z d = IntNode c (N SB a x b) z d

Red nodes must have black children16:

leftBalance c (IntNode SR a@(N SB _ _ _) x b@(N SB _ _ _)) z d =

IntNode c (N SR a x b) z d

leftBalance c (IntNode SR E x E) z d = IntNode c (N SR E x E) z d

Unfortunately, we haven’t yet listed all cases. We know that the following
cases can’t happen, but we do not have enough information in the type to omit
them. We can skip them, but this means producing ”Non-exhaustive patterns”
exception for these impossible cases.

leftBalance c (IntNode SR a@(N SR _ _ _) x b) z d =

error "can’t happen"

leftBalance c (IntNode SR a x b@(N SR _ _ _)) z d =

error "can’t happen"

16 Note that the case of one regular node and one leaf node is not valid, because these
nodes must have different black heights.



The previous code illustrates a general problem with proofs. In fact, in Haskell
⊥ (bottom) is a member of every type. As a result, we can write:

concatenate :: List a m -> List a n -> List a (Plus m n)

concatenate = undefined

Of course, the implementation of the concatenate function does not meet
our expectations. But this code still type checks.

7 Type Signatures for Functions Involving GADTs

Hindley-Milner (HM) is a classical type inference method [11]. One of the most
important properties of HM is ability to always deduce the most general (prin-
ciple) type of every term.

However, GADTs pose a difficult problem for type inference, because pro-
grams with GADTs lose principle type property [12]. For example, consider the
following GADT program:

data Test t where

TInt :: Int -> Test Int

TString :: String -> Test String

f (TString s) = s

There are two possible principal types, but neither of them is an instance of
the other:

f :: Test t -> String

f :: Test t -> t

Also without type signature the following function fails to typecheck:

f’ (TString s) = s

f’ (TInt i) = i

Adding type signature fixes the problem:

f’ :: Test t -> t

More information on type inference for programs with GADTs is provided
in [12].



8 GADTless Programming

Previous sections should convince the reader that GADTs are a very powerful
and helpful extension of the language. However, there are cases when this ex-
tension is not available (for example, this feature is not implemented in Hugs
compiler). For this reason, there is an interest in replacing them with simpler
features while not substantially changing programs and their meanings. This is
called GADTless programming [13].

For example, expression evaluator from section 3 can be implemented using
type classes [8]:

class Expr e where

intVal :: Int -> e Int

boolVal :: Bool -> e Bool

add :: e Int -> e Int -> e Int

isZero :: e Int -> e Bool

if’ :: e Bool -> e t -> e t -> e t

Bad expressions are still rejected by the type checker:

ghci> :t isZero $ boolVal True

Couldn’t match expected type ‘Int’ with actual type ‘Bool’...

ghci> :t isZero $ intVal 5

isZero $ intVal 5 :: Expr e => e Bool

Evaluation is implemented by defining a helper data type as an instance of
Expr e type class:

newtype Eval a = Eval {runEval :: a}

instance Expr Eval where

intVal x = Eval x

boolVal x = Eval x

add x y = Eval $ runEval x + runEval y

isZero x = Eval $ runEval x == 0

if’ x y z = if (runEval x) then y else z

t = runEval $ isZero $ intVal 5

Printing expression is implemented in a similar way:

newtype Eval a = Eval {runEval :: a}

instance Expr Print where

intVal x = Print $ show x

boolVal x = Print $ show x

add x y = Print $ printExpr x ++ "+" ++ printExpr y



isZero x = Print $ "isZero(" ++ printExpr x ++ ")"

if’ x y z = Print $ "if (" ++ printExpr x ++ ") then (" ++

printExpr y ++ ") else (" ++ printExpr z ++ ")"

t’ = printExpr $ isZero $ intVal 5

9 Usage of GADTs in Yampa

Yampa is a domain-specific language for functional reactive programming (FRP)
[14]. FRP is a programming paradigm of expressing data flows using the building
blocks of functional programming.

Based on the information from [9], this section describes how GADTs were
used to improve performance of Yampa programs.

SF a b
stream of a's stream of b's

Fig. 2. Signal function SF a b.

Signal function is a central abstraction in Yampa. It represents a simple
synchronous process mapping an input signal to an output signal (see figure 2).
The type of the signal function is SF a b and it can be constructed from an
ordinary function using the following function:

arr :: (a -> b) -> SF a b

SF a b SF b c

SF a c = SF a b >>> SF b c

stream of a's stream of c's

Fig. 3. Composition of signal functions.

The following function provides a composition of signal functions (as shown
with figure 3):

(>>>) :: SF a b -> SF b c -> SF a c

There is a natural requirement to eliminate the overhead of composition with
identity function:

arr id >>> f = f

f >>> arr id = f



As an attempt to implement this in Yampa we can imagine introducing a
special value constructor to represent identity signal functions:

data SF a b = ...

| SFId -- Represents arr id.

But the return type of this value constructor is still SF a b. We can use
the same tricks as in section 3 for phantom types. We can define a function to
construct the value and restrict the type to SF a a:

identity :: SF a a

identity = SFId

Now we can try to use the new value constructor in the definition of the
function >>> this way:

(>>>) :: SF a b -> SF b c -> SF a c

...

SFId >>> sf = sf

sf >>> SFId = sf

But this does not type check, because when we pattern match using SFId

value constructor, the type is still SF a b, not SF a a. This situation is similar
to the case with phantom types described in section 3. The solution is to use
GADT to represent the signal function:

data SF a b where

...

SFId :: SF a a

After this change the function >>> as presented above must type check due
to type refinement in pattern matching.

Table 1. Performance improvements enabled by GADTs in Yampa programs

Benchmark TS [s] TG[s]

1 0.41 0.00
2 0.74 0.22
3 0.45 0.22
4 1.29 0.07
5 1.95 0.08
6 1.48 0.69
7 2.85 0.72

There are other performance improvements that are enabled by GADTs in
Yampa [9]. The results of performance improvements are shown in table 1 that



was taken as is from [9]. The table shows execution time of several benchmarks
using initial simply-optimized implementation (TS) and the implementation with
GADT-based optimizations (TG). It is also noted in [9] that GADTs allowed to
write a more concise and cleaner API without the need of pre-composed signal
function (that were defined only for performance reasons).

10 Conclusion

This article has demonstrated the usefulness of GADTs in practice with several
use cases:

– We have shown that GADTs are useful for domain-specific embedded lan-
guages: they allow to statically type-check valid expressions.

– GADTs allow to express generic functions using representation types and
universal data types.

– GADTs can be used as a lightweight way to ensure program correctness.
They allow to encode domain-specific invariants in data type. The program-
mer can decide which parts of her or his program require verification and add
only relevant invariants. Haskell enforces a phase separation between run-
time values and compile-time types. Invariants are expressed using types, so
there is no additional run-time cost. But on the other hand, we have shown
the issue with the ⊥ value.

– We have also described how GADTs were used to improve performance of
Yampa programs.

As a result, we have shown that the notion of GADTs is a very valuable
extension of the Haskell language.

11 Acknowledgments

This tutorial article was inspired by Simon Peyton-Jones talk on LASER 2012
summer school. The source code for the red-black tree example was originally
written by Stephanie Weirich for a university course. The author is grateful to
have ability to use this great example of GADTs usage in this tutorial.

References

1. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA,
USA (2002)

2. Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A history of haskell: being lazy
with class. In: Proceedings of the third ACM SIGPLAN conference on History of
programming languages. HOPL III, New York, NY, USA, ACM (2007) 12–1–12–55

3. Hinze, R., et al.: Fun with phantom types. The fun of programming (2003) 245–262
4. Weirich, S.: RepLib: a library for derivable type classes. In: Proceedings of the

2006 ACM SIGPLAN workshop on Haskell. Haskell ’06, New York, NY, USA,
ACM (2006) 1–12



5. Eisenberg, R.A., Weirich, S.: Dependently typed programming with singletons. In:
Proceedings of the 2012 symposium on Haskell symposium. Haskell ’12, New York,
NY, USA, ACM (2012) 117–130

6. Okasaki, C.: Red-black trees in a functional setting. J. Funct. Program. 9(4) (July
1999) 471–477

7. Weirich, S.: Dependently-typed programming in GHC. In: Proceedings of the
11th international conference on Functional and Logic Programming. FLOPS’12,
Berlin, Heidelberg, Springer-Verlag (2012) 3–3

8. Carette, J., Kiselyov, O., Shan, C.c.: Finally tagless, partially evaluated: Tag-
less staged interpreters for simpler typed languages. J. Funct. Program. 19(5)
(September 2009) 509–543

9. Nilsson, H.: Dynamic optimization for functional reactive programming using gen-
eralized algebraic data types. In: Proceedings of the tenth ACM SIGPLAN inter-
national conference on Functional programming. ICFP ’05, New York, NY, USA,
ACM (2005) 54–65

10. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,
J.P.: Giving Haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN
workshop on Types in language design and implementation. TLDI ’12, New York,
NY, USA, ACM (2012) 53–66

11. Cardelli, L.: Basic polymorphic typechecking. Sci. Comput. Program. 8(2) (April
1987) 147–172

12. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and
decidable type inference for GADTs. In: Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming. ICFP ’09, New York, NY,
USA, ACM (2009) 341–352

13. Sulzmann, M., Wang, M.: GADTless programming in Haskell 98. (2006)
14. Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming, contin-

ued. In: Proceedings of the 2002 ACM SIGPLAN workshop on Haskell. Haskell
’02, New York, NY, USA, ACM (2002) 51–64


