Run-Length Encoding

Compression
1. Exercise: Define a function

chomp :: String ! String

that selects a run of repeated characters from the start of a string, with the
run being as long as possible.
For example:
> chomp "aaaaabbbbcc"
"aaaaa"

> chomp "dddddddddddd"
"dddddddddddd"

2. Exercise: Using chomp, define a function

runs :: String ! [String]

that splits a string into a list of runs of repeated characters, with each run
comprising at most nine characters.
For example:
> runs "aaaaabbbbcc"
["aaaaa","bbbb","cc"]

> runs "dddddddddddd"
["ddddddddd","ddd"]

3. Exercise: Using runs, define a function

encode :: String ! [(Char; Int)]

that transforms a string into a list of pairs comprising the character from each
run together with its number of repetitions.

For example:
> encode "aaaaabbbbcc"
[('a',5),('b',4),('c',2)]

> encode "dddddddddddd"
[('d',9),('d',3)]

4. Exercise: Define a function

flatten :: [(Char; Int)] ! String

That flattens a list of pairs of characters and digits to a string. For example:
> flatten [('a',5),('b',4),('c',2)]
"a5b4c2"

> flatten [('d',9),('d',3)]
"d9d3"

5. Exercise: Using encode and flatten, define a function

compress :: String ! String

that compresses a string using run-length encoding.

 For example:
> compress "aaaaabbbbcc"

"a5b4c2"
> compress "dddddddddddd"
"d9d3"

Decompression

6. Exercise: Define a function

decode :: [(Char; Int)] ! String

that performs the inverse function to encode.

For example:
> decode [('a',5),('b',4),('c',2)]
"aaaaabbbbcc"

> decode [('d',9),('d',3)]
"dddddddddddd"

7. Exercise: Define a function

expand :: String ! [(Char; Int)]

that performs the inverse function to flatten.

 For example:
> expand "a5b4c2"
[('a',5),('b',4),('c',2)]

> expand "d9d3"
[('d',9),('d',3)]

8. Exercise: Using decode and expand, define a function

decompress :: String ! String
that performs the inverse function to compress.

 For example:
> decompress "a5b4c2"
"aaaaabbbbcc"

> decompress "d9d3"
"dddddddddddd"
