Both sections relate to the case study:
Index for a document of text.

SECTION A:

Given the attached Haskell code which produces an index of words, make the following alterations by modifying existing functions and including new functions where necessary – parts 1) to 5):

1) Where a word occurs N times on the same line, ensure that the line number occurs n times in the index entry for that word.

2) Allow words to be hyphenated and treat a hyphenated word as a single word. However, for those words which are split over two lines, treat a split word as a single word without the hyphen.

3) Treat a capitalised word (one or more capitals) as being different from the word in all lower case (but they should still be sorted alphabetically) – unless it is at the start of a sentence with only the initial letter capitalised. A sentence is terminated by a ‘.’, ‘?’ or ‘!’.

4) Make the output more readable in the form of an index table in columns with appropriate spacing and without brackets.

5) Include a user-friendly menu, so that the user can choose input/output file names or default files, and choose to rerun or exit.

Parts 1) to 5) may be developed in any order.

SECTION B:
6) For your version of function, makeIndex (only), show how an alternative ordering of the composed functions would provide a more efficient execution of makeIndex. Justify your answer.

7) For the parts 1) to 5) above that you have attempted, discuss the use you have made of a) higher-order functions, b) list comprehension, c) monadic input/output, d) functional composition, and/or e) partial parameterisation (or Curried functions). Include an evaluation of how useful your use of these concepts has been.

import Prelude

type Doc
= String

type Line
= String

type Word
= String

makeIndex :: Doc -> [([Int], Word)]

makeIndex

 =
shorten .
--
[([Int], Word)]
-> [([Int], Word)]

amalgamate .--
[([Int], Word)]
-> [([Int], Word)]

makeLists .
--
[(Int, Word)]
-> [([Int], Word)]

sortLs .
--
[(Int, Word)]
-> [(Int, Word)]

allNumWords .--
[(Int, Line)]
-> [(Int, Word)]

numLines .
--
[Line]

-> [(Int, Line)]

splitUp
--
Doc

-> [Line]

splitUp :: Doc -> [Line]

splitUp [] = []

splitUp text

 = takeWhile (/='\n') text :
--
first line

 (splitUp .

--
splitup other lines

 dropWhile (==’\n’) .
--
delete 1st newline(s)

 dropWhile (/='\n')) text
--
other lines

numLines :: [Line] -> [(Int, Line)]

numLines lines

--
list of pairs of

 = zip [1 .. length lines] lines
--
line no. & line

--
for each line

--
a)
split into words

--
b)
attach line no. to each word

splitWords :: Line -> [Word]

--
a)

splitWords [] = []

splitWords line

 = takeWhile isLetter line :

--
first word in line

(splitWords .

--
split other words

 dropWhile (not.isLetter) .
--
delete separators

 dropWhile isLetter) line
--
other words

 where

 isLetter ch

= (‘a’<=ch) && (ch<=’z’)

 || (‘A’<=ch) && (ch<=’Z’)

numWords :: (Int, Line) -> [(Int, Word)]
--
b)

numWords (number, line)

 = map addLineNum (splitWords line)
--
all line pairs

 where

 addLineNum word = (number, word)

--
a pair

allNumWords :: [(Int, Line)] -> [(Int, Word)]

allNumWords = concat . map numWords

-- doc pairs

sortLs :: [(Int, Word)] -> [(Int, Word)]

sortLs [] = []

sortLs (a:x)

 = sortLs [b | b <- x, compare b a]
--
sort 1st half

 ++ [a] ++

--
1st in middle

 sortLs [b | b <- x, compare a b]
--
sort 2nd half

 where

 compare (n1, w1) (n2, w2)

 = (w1 < w2)

--
1st word less

 || (w1 == w2 && n1 < n2)
--
check no.

makeLists :: [(Int, Word)] -> [([Int], Word)]

makeLists

 = map mk

-- all pairs

 where mk (num, word) = ([num], word)

-- list of single no.

amalgamate :: [([Int], Word)] -> [([Int], Word)]

amalgamate [] = []

amalgamate [a] = [a]

amalgamate ((n1, w1) : (n2, w2) : rest)-- pairs of pairs

 | w1 /= w2

= (n1, w1) : amalgamate ((n2, w2) : rest)

 | otherwise
= amalgamate ((n1 ++ n2, w1) : rest)

--
if words are same grow list of numbers

shorten :: [([Int], Word)] -> [([Int], Word)]

shorten

 = filter long

--
keep pairs >4

 where

long (num, word) = length word > 4 --
check word >4

