Visual Functional Programming - An
Approach Based On Interaction Nets

Miguel Vilaga

September 12, 2008



Chapter 5
Visual Functional Languages

This chapter presents an overview of the work done in visual functional pro-
gramming. As some of the features are not specific of the functional setting,
occasionally results in the (more general) visual programming area will be
mentioned. However, visual programming in its broader sense is outside the

scope of this thesis.

The motivation to move from the textual to the visual setting resides
in results from cognitive and human brain sciences that state that “for the
human brain it is easier and faster to understand and comprehend images
than text”.

As pointed out in [NPCO1], the pictorial aspect of visual languages im-
proves the mental understanding done by a programmer, compared with tex-
tual programming. This allows programmers to have a better formulation of
the semantic relationships existing in programs, which much facilitates the

ability to develop new program patterns.

With this intention in mind, several attempts to define visual program-
ming languages have been and continue to be made, which cover all the main
programming paradigms: imperative, object-oriented, logic and functional.

One fundamental feature of functional programming is the presence of
higher-order constructs. A function f can take function g as an argument
and ¢ can then be applied within the body of f. Expressing this feature is

eagy if variables are used but some purely visual solutions exist as well, as

39



40 5. Visual Functional Languages

will be seen below.

A second difficulty arising from the higher-order nature of functional pro-
grams is that a (curried) function of two arguments may receive only its first
argument and return as result a function. In a box-based representation this
means that it must be possible for a box to lose its input ports one by one —
a complicated process.

Work in this area has addressed different aspects of visual programming;
while some projects propose new visual programming languages, others sim-
ply introduce graphical visualisations of textual languages. The current chap-

ter presents an overview of some of those languages.

5.1 VEX

VEX [CHZ95] is a completely visual representation of the pure untyped A-
calculus. The motivation of its authors was to overcome the difficulties that
students have learning aspects of the A-calculus.

VEX uses containment (boxes inside boxes), geometric placement (boxes
place side-by-side for instance for function application) and linking (between
boxes) as graphical ingredients.

Application is represented by circles externally tangent to each other and
with one arrow pointing the argument. Abstraction is represented by circles
containing their body definitions inside, and the abstracted parameters are
represented by inner circles tangent to the abstraction circle. For instance,
considering the Y combinator defined as the A&-term Af. (Az.f (zz)) (A\z.f (x x)),
the A-term Y e is represented in VEX by the visual expression given in Fig-
ure 95.1.

The reduction process is mimicked in VEX moving the argument of an
application (which is depicted as a circle) to the inner circle of the abstraction
(that corresponds to the bound variable). Although this way of mimicking
reduction is intuitive, a big disadvantage is that the size of the representation
of an expression is changed, making it difficult to track if a sub-expression
has been modified or not. Figure 5.2 shows one step of the reduction of the

expression Y e.



5.2. Pivotal 41

Figure 5.1: VEX expression for Y e (taken from [CHZ95])

Figure 5.2: VEX expression after reduction of Y e (taken from [CHZ95])

5.2 Pivotal

The Pivotal project [Han02] offers a visual notation (and Haskell program-
ming environment) for data structures, but not programs. It is more an inter-
preter with visualisation capabilities; the user types textual Haskell code in
a regular Haskell file. When loaded in the Pivotal interpreter the functional
values which the interpreter knows how to display are shown graphically.
Other values and program definitions remain only textual. An example of a
file loaded in the interpreter is given in Figure 5.3 where it can be seen that
tree is shown textually and visually.

The interpreter even allows that some of the elements visualised can be
graphically edited, and reflects those changes in the textual expression.

Pivotal and Vital (its predecessor) support an useful subset of Haskell.



42 5. Visual Functional Languages

O After editing

[m] import Styles

[m] data Tree = Tip Int
| Tree :4: Tree

[} tree = [([(Tip 5) :+: ((Tip 6) :+: [(Tir

Figure 5.3: Displayed tree allowing editing (taken from [Vit])

Both tools are appealing as visualisers, but their interest is limited to certain
pre-defined types, in particular those whose values can be visually edited. Al-
though, the user have the possibility to define how to visualise new datatypes.

They can hardly be considered to be visual programming tools, since they

do not allow for programs to be graphically created.

5.3 Visual Haskell

Visual Haskell [Ree95] more or less stands on the opposite side of the spec-
trum of possibilities when compared with Pivotal: this is a dataflow-style vi-
sual notation for Haskell programs, which allows programmers to define their
programs visually and then have them translated automatically to Haskell
code. It is a two purpose project; on one hand it defines a visualisation
tool for a subset of Haskell and on the other hand it intends to be a visual
programming language on its own.

In Visual Haskell, functions are represented as boxes with input ports for
the arguments and exactly one output port for the result; the contents of each
box corresponds to the body of the function. Inside boxes named variables

are used to refer to function parameters. As an example, the Visual Haskell



5.4. VFPE 43

representation of factorial (fact) function is presented in Figure 5.4.

Figure 5.4: Visual Haskell representation of factorial (taken from [Ree95])

As function definitions use variables, functions that receive functions as
arguments are accepted, and thus partial support for higher-order program-
ming exists.

The current status of the project is that a prototype visual editor for the
language has been produced, but no notion of reduction in Visual Haskell

has been implemented yet.

5.4 VFPE

The Visual Functional Programming system [Kel02] is a complete environ-
ment that allows functional programs to be defined visually, and then reduced
step by step.

VFP uses a notation without boxes, more inspired by the traditional rep-
resentations of functional programs used in implementation-oriented abstract
machines [Jon87]. In particular, it allows for named functions and variables
(used for arguments, as in Visual Haskell). An example program is given in
Figure 5.5.

VFP supports a wide part of the Haskell syntax tree. Since explicit
abstraction and application nodes are used, higher-order programming is

supported.



44 5. Visual Functional Languages

Figure 5.5: VFPE example (taken from [Kel02])

5.5 Visual Lambda

VisualLambda [DV96] is a formalism based on graph-rewriting: programs
are represented as a kind of hierarchical graphs whose reduction mimics the
execution of a functional program. Functions are represented by boxes with
input ports for the arguments and exactly one output port for the result.
As in Visual Haskell, the contents of the box correspond to the body of the
function, although the notations differ in that Visual Haskell uses named
variables to refer to function arguments while in VisualLambda a purely
visual notation with arrows is used.

One interesting aspect of this language is the purely visual treatment of
higher-order notions; in VisualLambda a special box (depicted in grey) would
be used as a placeholder for a function g which is an argument of f (in the
body of f) to be instantiated later, and an arrow would link an input port
in the box of f to the box of g. Figure 5.6 exemplifies this grey box.

As an example the A-term (AfA\x.f (fz)) (Ax.z + 1) 23 is represented as
in Figure 5.7.

As a full language, it has a notion of reduction defined inside the formal-

ism, which is implemented by the VisualLambda tool.

5.6 Final Remarks

VEX is a visual language with a notion of reduction but it is restricted to
the A-calculus. The Pivotal project offers a visual notation (and Haskell

programming environment) for data-structures, but not programs. Visual



5.6. Final Remarks 45

i

Figure 5.6: VisualLambda example of grey box (taken from [DV96])

Figure 5.7: VisualLambda example for A-term (AfAz.f (fz)) (Az.x + 1) 23
(taken from [DV96])

Haskell more or less stands at the opposite side of the spectrum of possi-
bilities: this is a dataflow-style visual notation for Haskell programs, which
allows programmers to define their programs visually (with the assistance of
a tool) and then have them translated automatically to Haskell code. Kelso’s
VFP system is a complete environment that allows to define functional pro-
grams visually and then reduce them step by step. Finally, VisualLambda is
a formalism based on graph-rewriting: programs are defined as graphs whose

reduction mimics the execution of a functional program.

Visual Haskell and VisualLambda have in common the fact that functions
are represented as boxes with input ports for the arguments and an output

port for the result. They differ in that Visual Haskell uses named variables



46 5. Visual Functional Languages

to refer to function arguments, while VisualLambda uses a graphical nota-
tion based on arrows. VFP uses a notation without boxes, inspired by the
representations used in implementation-oriented graph-rewriting machines.
In particular, it allows for named functions but also for A-abstractions, and
an explicit application node exists. Variables are used for arguments, as in
Visual Haskell.

In what concerns higher-order, Visual Haskell and VFP support it through
the use of variables; in VisualLambda a special box would be used as a place-
holder for g (in the body of f) to be instantiated later.

As far as we know none of these systems is widely used in practice.



