
Visual Functional Programming - An

Approach Based On Interaction Nets

Miguel Vilaça

September 12, 2008

Chapter 5

Visual Functional Languages

This chapter presents an overview of the work done in visual functional pro-

gramming. As some of the features are not specific of the functional setting,

occasionally results in the (more general) visual programming area will be

mentioned. However, visual programming in its broader sense is outside the

scope of this thesis.

The motivation to move from the textual to the visual setting resides

in results from cognitive and human brain sciences that state that “for the

human brain it is easier and faster to understand and comprehend images

than text”.

As pointed out in [NPC01], the pictorial aspect of visual languages im-

proves the mental understanding done by a programmer, compared with tex-

tual programming. This allows programmers to have a better formulation of

the semantic relationships existing in programs, which much facilitates the

ability to develop new program patterns.

With this intention in mind, several attempts to define visual program-

ming languages have been and continue to be made, which cover all the main

programming paradigms: imperative, object-oriented, logic and functional.

One fundamental feature of functional programming is the presence of

higher-order constructs. A function f can take function g as an argument

and g can then be applied within the body of f . Expressing this feature is

easy if variables are used but some purely visual solutions exist as well, as

39

40 5. Visual Functional Languages

will be seen below.

A second difficulty arising from the higher-order nature of functional pro-

grams is that a (curried) function of two arguments may receive only its first

argument and return as result a function. In a box-based representation this

means that it must be possible for a box to lose its input ports one by one –

a complicated process.

Work in this area has addressed different aspects of visual programming;

while some projects propose new visual programming languages, others sim-

ply introduce graphical visualisations of textual languages. The current chap-

ter presents an overview of some of those languages.

5.1 VEX

VEX [CHZ95] is a completely visual representation of the pure untyped λ-

calculus. The motivation of its authors was to overcome the difficulties that

students have learning aspects of the λ-calculus.

VEX uses containment (boxes inside boxes), geometric placement (boxes

place side-by-side for instance for function application) and linking (between

boxes) as graphical ingredients.

Application is represented by circles externally tangent to each other and

with one arrow pointing the argument. Abstraction is represented by circles

containing their body definitions inside, and the abstracted parameters are

represented by inner circles tangent to the abstraction circle. For instance,

considering the Y combinator defined as the λ-term λf. (λx.f (x x)) (λx.f (x x)),

the λ-term Y e is represented in VEX by the visual expression given in Fig-

ure 5.1.

The reduction process is mimicked in VEX moving the argument of an

application (which is depicted as a circle) to the inner circle of the abstraction

(that corresponds to the bound variable). Although this way of mimicking

reduction is intuitive, a big disadvantage is that the size of the representation

of an expression is changed, making it difficult to track if a sub-expression

has been modified or not. Figure 5.2 shows one step of the reduction of the

expression Y e.

5.2. Pivotal 41

Figure 5.1: VEX expression for Y e (taken from [CHZ95])

Figure 5.2: VEX expression after reduction of Y e (taken from [CHZ95])

5.2 Pivotal

The Pivotal project [Han02] offers a visual notation (and Haskell program-

ming environment) for data structures, but not programs. It is more an inter-

preter with visualisation capabilities; the user types textual Haskell code in

a regular Haskell file. When loaded in the Pivotal interpreter the functional

values which the interpreter knows how to display are shown graphically.

Other values and program definitions remain only textual. An example of a

file loaded in the interpreter is given in Figure 5.3 where it can be seen that

tree is shown textually and visually.

The interpreter even allows that some of the elements visualised can be

graphically edited, and reflects those changes in the textual expression.

Pivotal and Vital (its predecessor) support an useful subset of Haskell.

42 5. Visual Functional Languages

Figure 5.3: Displayed tree allowing editing (taken from [Vit])

Both tools are appealing as visualisers, but their interest is limited to certain

pre-defined types, in particular those whose values can be visually edited. Al-

though, the user have the possibility to define how to visualise new datatypes.

They can hardly be considered to be visual programming tools, since they

do not allow for programs to be graphically created.

5.3 Visual Haskell

Visual Haskell [Ree95] more or less stands on the opposite side of the spec-

trum of possibilities when compared with Pivotal: this is a dataflow-style vi-

sual notation for Haskell programs, which allows programmers to define their

programs visually and then have them translated automatically to Haskell

code. It is a two purpose project; on one hand it defines a visualisation

tool for a subset of Haskell and on the other hand it intends to be a visual

programming language on its own.

In Visual Haskell, functions are represented as boxes with input ports for

the arguments and exactly one output port for the result; the contents of each

box corresponds to the body of the function. Inside boxes named variables

are used to refer to function parameters. As an example, the Visual Haskell

5.4. VFPE 43

representation of factorial (fact) function is presented in Figure 5.4.

n

n

1

1

fact

n

n

0

Figure 5.4: Visual Haskell representation of factorial (taken from [Ree95])

As function definitions use variables, functions that receive functions as

arguments are accepted, and thus partial support for higher-order program-

ming exists.

The current status of the project is that a prototype visual editor for the

language has been produced, but no notion of reduction in Visual Haskell

has been implemented yet.

5.4 VFPE

The Visual Functional Programming system [Kel02] is a complete environ-

ment that allows functional programs to be defined visually, and then reduced

step by step.

VFP uses a notation without boxes, more inspired by the traditional rep-

resentations of functional programs used in implementation-oriented abstract

machines [Jon87]. In particular, it allows for named functions and variables

(used for arguments, as in Visual Haskell). An example program is given in

Figure 5.5.

VFP supports a wide part of the Haskell syntax tree. Since explicit

abstraction and application nodes are used, higher-order programming is

supported.

44 5. Visual Functional Languages

After trying such a nested-panel box layout, we chose trees rather than boxes

for the VFPE because we found trees less cluttered for large expressions, and

because trees are more familiar in the context of language grammars and functional

expressions. Another factor in the choice of tree expressions was the possibility of

allowing programmer-controlled layout of expressions.

A late realisation in

the development of the

VFPE was that program

layout is largely independent

of the rest of the application.

Provided that for each sub-

expression there is a

location that can serve as a

“handle” by which the

expression can be selected,

and which can be used as a

drag-and-drop source and

target, the editor and

interpreter (described in

chapters 5 and 8) could operate equally well with alternative layouts. With the

additional condition that sub-expressions are rendered in well-defined rectangles, it

would even be possible to allow the programmer to mix layouts within a program

(although the additional expressiveness this would allow might be overshadowed by

the additional complexity it would introduce).

80

Figure 5

x if-then

<

x 1

*

x -1

x

x

if-then

<

x 1

*

x -1

x

Tree layout

Box layoutFigure 5.5: VFPE example (taken from [Kel02])

5.5 Visual Lambda

VisualLambda [DV96] is a formalism based on graph-rewriting: programs

are represented as a kind of hierarchical graphs whose reduction mimics the

execution of a functional program. Functions are represented by boxes with

input ports for the arguments and exactly one output port for the result.

As in Visual Haskell, the contents of the box correspond to the body of the

function, although the notations differ in that Visual Haskell uses named

variables to refer to function arguments while in VisualLambda a purely

visual notation with arrows is used.

One interesting aspect of this language is the purely visual treatment of

higher-order notions; in VisualLambda a special box (depicted in grey) would

be used as a placeholder for a function g which is an argument of f (in the

body of f) to be instantiated later, and an arrow would link an input port

in the box of f to the box of g. Figure 5.6 exemplifies this grey box.

As an example the λ-term (λf.λx.f (f x)) (λx.x + 1) 23 is represented as

in Figure 5.7.

As a full language, it has a notion of reduction defined inside the formal-

ism, which is implemented by the VisualLambda tool.

5.6 Final Remarks

VEX is a visual language with a notion of reduction but it is restricted to

the λ-calculus. The Pivotal project offers a visual notation (and Haskell

programming environment) for data-structures, but not programs. Visual

5.6. Final Remarks 45

L. Dami and D. Vallet 140

The notation is convenient for functional composition, but nevertheless is fairly limited.

The reason is that it does not capture the full story about functions: we can show how data flows

from one function to the next, but we cannot show a fundamental aspect of functional program-

ming, namely the fact that functions themselves are data, and can be used as input to other func-

tions. Such higher-order programming features are essential for example for modelling recur-

sion. Since the boxes and arrows of Figure 1 can only represent a static dataflow configuration,

there are many black boxes which cannot be “opened up” graphically: to explain what they do,

we have to go to other formalisms. As a matter of fact, functional visual programming systems

often escape the dataflow limitation by adding name references to a global environment (this can

bring support for recursion), or by adding the notion of primitive boxes written in some external

language.

In order to capture higher-order programming in a visual formalism, what is needed is some

notation for functional application. Instead of using only functions which are known statically,

we should be able to get a function at some input port, and then apply it to some data available

in the current configuration. This corresponds to a functional expression of the form (x a), where

x is a variable, while a is any expression. To do so, we introduce the notion of grey box. A grey

box is a template for a function which will be filled up later. It can be seen as a printed circuit,

prepared to receive a chip, but in which the chip has not been plugged yet. The question, then,

is: how and when will the chip be supplied? This is answered by a set of rewrite rules associated

with the graphical notation. The chip (the function) travels in the system across usual data paths,

until it reaches its grey box, at which point it can start to operate. Although it would obviously

not make sense in terms of real hardware, the notion of a “chip travelling in the circuit” is ex-

tremely simple to explain and understand. The example in Figure 2 displays a configuration in

which a function is expected to arrive at the leftmost input port, for filling the grey box on the

bottom. All the circuitry to feed arguments to that function and to collect the result is already

prepared.

The resulting graphical system has the full power of the lambda calculus. It is primarily in-

tended as a teaching tool, maybe not only for functional programming, but also for more general

purposes like principles of formal systems. However, it may also provide interesting insights

into topics such as graph reduction, parallel reduction, or out-of-order parameter binding. Such

possibilities are briefly discussed in the last section.

Figure 2 Example of a grey box
Figure 5.6: VisualLambda example of grey box (taken from [DV96])

143 Higher-Order Functional Composition in Visual Form

A box is fully connected iff all its input ports have incoming arrows; it is free iff all its input

ports have no incoming arrow. By this definition, boxes like without any input ports

are both free and fully connected. Conversely, boxes with several input ports can be neither free

nor fully connected, if just some of their input ports have incoming arrows.

A graph is well-connected iff

• every grey box is fully connected, and furthermore has an incoming arrow on its border

• if a white box is fully connected, then there is no outgoing arrow from its border; con-

versely, it is not fully connected, then there is no outgoing arrow from its output port

• the output port of every composite box has an incoming arrow

• there is no cycle, i.e. no path for which the source and the destination are the same port.

It may seem that there are many rules, and that building a well-connected box graph is a

complex process. In fact, with just a little practice, most of these rules are obvious to the eye;

the only rule which requires more complex, non-local analysis is the last rule about cycles.

An example of a correct graph is given in Figure 5. It corresponds to the lambda expression

(!f.!x. f(f x)) (!x. x+1) 23

This displays many features which are typical of box graphs. The composite box on the left is

an incrementation function, using the constants ‘1’ and ‘+’. The composite box on the right takes

a function as first argument, and applies it twice to its second argument. What may seem some-

what unusual to a functional programmer is that functional application is not always pictured the

same way. If the operator is statically known, then application is simply an arrow from the actual

argument to the corresponding input port of the function. If the operator a variable, grey boxes

must be used.

Figure 6 displays an incorrect graph, in which we tried to represent as many kinds of mis-

takes as possible. These are identified by small italic letters. The problems are the following:

a) a white box cannot be the destination of an arrow

b) the box has two output ports

1

Figure 5 A simple box graph

23
1

+

Figure 5.7: VisualLambda example for λ-term (λf.λx.f (f x)) (λx.x + 1) 23
(taken from [DV96])

Haskell more or less stands at the opposite side of the spectrum of possi-

bilities: this is a dataflow-style visual notation for Haskell programs, which

allows programmers to define their programs visually (with the assistance of

a tool) and then have them translated automatically to Haskell code. Kelso’s

VFP system is a complete environment that allows to define functional pro-

grams visually and then reduce them step by step. Finally, VisualLambda is

a formalism based on graph-rewriting: programs are defined as graphs whose

reduction mimics the execution of a functional program.

Visual Haskell and VisualLambda have in common the fact that functions

are represented as boxes with input ports for the arguments and an output

port for the result. They differ in that Visual Haskell uses named variables

46 5. Visual Functional Languages

to refer to function arguments, while VisualLambda uses a graphical nota-

tion based on arrows. VFP uses a notation without boxes, inspired by the

representations used in implementation-oriented graph-rewriting machines.

In particular, it allows for named functions but also for λ-abstractions, and

an explicit application node exists. Variables are used for arguments, as in

Visual Haskell.

In what concerns higher-order, Visual Haskell and VFP support it through

the use of variables; in VisualLambda a special box would be used as a place-

holder for g (in the body of f) to be instantiated later.

As far as we know none of these systems is widely used in practice.

