(i)
Theorem: (*) x = (* x)
Proof:
(*) x
= {definition of partial application}
\y -> x * y
= {commutativity of "*"}
\y -> y * x
= {definition of "(* x)"}
(* x)
(ii)
Theorem: (+) x = (x +)
Proof:
(+) x
= {definition of partial application}
\y -> x + y
= {definition of "(x +)"}
(x +)
(iii)
Theorem: (-) x /= (- x)
Proof:
(-) x
= {definition of partial application}
\y -> x - y
/= {definition of prefix negation, which is not a section}
(- x)