You can use a general fold and unfold, without any type-specific programming if you re-express Expr as the least fixed point of its underlying "base functor":

> data ExprF a = Add a a | Sub a a | Mul a a | Eq  a a | B Bool | I Int
>   deriving (Show,Functor)
>
> data Expr = Fix ExprF

Then use the standard definitions:

> newtype Fix f = Roll { unRoll :: f (Fix f) }
>
> fold :: Functor f => (f b -> b) -> (Fix f -> b)
> fold h = h . fmap (fold h) . unRoll
>
> unfold :: Functor f => (a -> f a) -> (a -> Fix f)
> unfold g = Roll . fmap (unfold g) . g

Also handy:

> hylo :: Functor f => (f b -> b) -> (a -> f a) -> (a -> b)
> hylo h g = fold h . unfold g

For details, see Jeremy Gibbons's paper "Calculating functional programs". There are probably easier sources as well.

-- Conal



On Sat, Mar 30, 2013 at 11:45 AM, J. J. W. <bsc.j.j.w@gmail.com> wrote:
Dear all,

I was wondering whether it was possible to write fold expressions more elegantly. Suppose I have the following
datastructure:

data Expr = Add Expr Expr
          | Sub Expr Expr
          | Mul Expr Expr
          | Eq  Expr Expr
          | B Bool
          | I Int
          deriving Show
          
type ExprAlgebra r = (r -> r -> r, -- Add
                      r -> r -> r, -- Sub
                      r -> r -> r, -- Mul
                      r -> r -> r, -- Eq
                      Bool   -> r, -- Bool
                      Int -> r     -- Int
                      )
                      
foldAlgebra :: ExprAlgebra r -> Expr -> r
foldAlgebra alg@(a, b, c ,d, e, f) (Add x y) = a (foldAlgebra alg x) (foldAlgebra alg y)
foldAlgebra alg@(a, b, c ,d, e, f) (Sub x y) = b (foldAlgebra alg x) (foldAlgebra alg y)
foldAlgebra alg@(a, b, c ,d, e, f) (Mul x y) = c (foldAlgebra alg x) (foldAlgebra alg y)
foldAlgebra alg@(a, b, c ,d, e, f) (Eq  x y) = d (foldAlgebra alg x) (foldAlgebra alg y)
foldAlgebra alg@(a, b, c ,d, e, f) (B b')    = e b'
foldAlgebra alg@(a, b, c ,d, e, f) (I i)     = f i

If I am correct, this works, however if we for example would like to replace all Int's by booleans (note: this is to illustrate my problem):

replaceIntByBool = foldAlgebra (Add, Sub, Mul, Eq, B, \x -> if x == 0 then B False else B True)

As you can see, a lot of "useless" identity code. Can I somehow optimize this? Can someone give me some pointers how I can write this more clearly (or with less code?) So I constantly don't have to write Add, Sub, Mul, for those things that I just want an "identity function"?

Thanks in advance!

Jun Jie

_______________________________________________
Haskell-Cafe mailing list
Haskell-Cafe@haskell.org
http://www.haskell.org/mailman/listinfo/haskell-cafe