
Overloaded Quotes for Template Haskell

Michael D. Adams

January 5, 2012

Caveat 1: I've only brie�y skimmed TMPH. I think I understand the type
system well enough to comment on how to change them, but I could easily be
missing some detail.

Caveat 2: The following discussion only considers quotes and splices for
expressions. Quotes and splices for types, declarations and patterns are ignored,
but are a simple generalization of these ideas.

1 Changes to Figure 2 of �Template Meta-programming

for Haskell�1

Figure 2 is unchanged except for the following de�nitions and rules:

• States: s ⊆ C,Bτ , S

• bracket:
Γ`n+1

Bm
e:τ Quasi m

Γ`n
C,S

[|e|]:mExp

• escB:
Γ`n−1

S
e:mExp

Γ`n
Bm

$e:τ

In the bracket rule, the notation �Quasim� means that m must be an instance
of the Quasi class.

2 Explanation

The system from �Template Meta-programming for Haskell� (TMPH) is largely
unchanged. Conceptually the only di�erence is that the Bracket state is no
longer a simple B but becomes Bm and carries a type, m, that determines the
expected type for splices directly within that bracket. Speci�cally, if in state
Bm then any splices inside it are expected to be of type mExp. Compare this
to TMPH where splices are of type QExp.

1Obtained from https://research.microsoft.com/en-us/um/people/simonpj/papers/meta-
haskell/meta-haskell.pdf on January 5, 2011

1

As with TMPH there is only one way to enter state Bm and that is by the
quote form. In TMPH all quotations are of type QExp, but we generalize this
to allow quotations to have type mExp for any m that is an instance of Quasi.

Splices from the Code (C) state (i.e. top level splices) still expect their body
to be of type QExp just as in TMPH. This is so that it can run in the compiler's
type-checker monad.

Nested splices, however, do not need run in the compiler's type-checker
monad they simply run in whatever monad the containing bracket uses.

3 Example

(This code hasn't been checked by a compiler so it may contain typos.)

$(let nextInt :: StateT Int Q Exp = do c <- get

put (c+1)

return (LitE (IntegerL c))

foo = [| $(nextInt) + $(nextInt) |]

bar = runStateT foo 1

baz = [| $(bar) + 5 |]

in baz)

Here �foo� has type �StateT Int Q Exp�, �bar� has type �Q Exp� and �baz� has
type �Q Exp�. Notice that �foo� does not have to be capable to running in the
compiler's type-checker monad as long as the �nal result of the top-level splice
is of type �Q Exp�. In this code, that is done via �runStateT�.

4 Desugaring

Conceptually a quote form (e.g. [| ...a... $(...b...) ...c... $(...d...) ...e...|]) behaves
as a do-block (e.g. do b' <- b; d' <- d; return (...a... b' ...c... d' ...e...)) where
each nested splice is run by the do-block and �nal statement of the do-block
constructs the expression using the results of those splices.

2

