David,
To paraphrase Kernighan, ascertaining correctness is twice as hard as writing a program in the first place. So if you're as clever as possible with your code, how will you know it's even correct?
Case in point: the infinite lists wrinkle that you started the thread with. /At a glance/ what do the general recursion versions (yours and Milan's) evaluate to on infinite lists? What are the benchmarks on the time it takes for a haskell programmer to figure them out? Would they not jump at the greater affordance of reasoning with Andreas's compositions?
Meaning and reasonableness have always been the hallmarks of core libs.
Least of all, since it's so losering to benchmark the wrong thing, see below on how Andreas-dropl no.1 beats out David-Milan by the tiniest sliver in short-needle-long-haystack. Like checking file extensions in pathnames that we saw in Andreas's Agda code. Here a concrete app brings real meaning to the timings as opposed to optimizing for vaporware. Watch them Agdaists fall off their chairs when they hit the speed boost.
Don't mean to preach to the choir. Only layin' down the facts for the sake of the archive that every boiled haskeller knows to switch datatypes if isSuffixOf becomes the bottleneck.
benchmarking simple shortNeedle in shortHaystack/lib
time 176.6 ns (176.4 ns .. 177.0 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 176.6 ns (176.5 ns .. 176.9 ns)
std dev 596.3 ps (318.4 ps .. 1.096 ns)
benchmarking simple shortNeedle in shortHaystack/Milan
time 135.6 ns (135.6 ns .. 135.6 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 135.6 ns (135.6 ns .. 135.6 ns)
std dev 45.49 ps (23.88 ps .. 79.14 ps)
benchmarking simple shortNeedle in shortHaystack/Abel
time 145.6 ns (142.5 ns .. 149.5 ns)
0.996 R² (0.996 R² .. 0.997 R²)
mean 147.3 ns (144.8 ns .. 150.0 ns)
std dev 8.616 ns (8.070 ns .. 9.037 ns)
variance introduced by outliers: 76% (severely inflated)
benchmarking simple shortNeedle in longHaystack/lib
time 71.12 μs (71.08 μs .. 71.15 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 71.12 μs (71.08 μs .. 71.16 μs)
std dev 142.7 ns (115.6 ns .. 186.3 ns)
benchmarking simple shortNeedle in longHaystack/Milan
time 45.00 μs (44.99 μs .. 45.00 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 45.00 μs (45.00 μs .. 45.01 μs)
std dev 21.04 ns (15.62 ns .. 28.75 ns)
benchmarking simple shortNeedle in longHaystack/Abel
time 43.68 μs (43.68 μs .. 43.70 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 43.69 μs (43.68 μs .. 43.69 μs)
std dev 18.29 ns (12.79 ns .. 27.76 ns)
benchmarking simple longNeedle in shortHaystack/lib
time 396.3 ns (396.2 ns .. 396.6 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 396.6 ns (396.3 ns .. 397.0 ns)
std dev 1.106 ns (707.9 ps .. 1.662 ns)
benchmarking simple longNeedle in shortHaystack/Milan
time 117.9 ns (117.9 ns .. 118.0 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 117.9 ns (117.9 ns .. 117.9 ns)
std dev 49.08 ps (30.66 ps .. 75.20 ps)
benchmarking simple longNeedle in shortHaystack/Abel
time 125.6 ns (125.6 ns .. 125.6 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 125.6 ns (125.6 ns .. 125.6 ns)
std dev 35.17 ps (19.08 ps .. 58.78 ps)
benchmarking simple longNeedle in longHaystack/lib
time 71.98 μs (71.92 μs .. 72.03 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 71.93 μs (71.85 μs .. 72.00 μs)
std dev 247.4 ns (199.9 ns .. 305.3 ns)
benchmarking simple longNeedle in longHaystack/Milan
time 47.26 μs (47.24 μs .. 47.29 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 47.28 μs (47.27 μs .. 47.29 μs)
std dev 35.43 ns (28.70 ns .. 45.80 ns)
benchmarking simple longNeedle in longHaystack/Abel
time 47.44 μs (47.43 μs .. 47.45 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 47.44 μs (47.44 μs .. 47.45 μs)
std dev 16.81 ns (10.63 ns .. 28.75 ns)
benchmarking use shortNeedle in shortHaystack/lib
time 617.9 ns (616.8 ns .. 618.7 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 617.9 ns (616.9 ns .. 618.4 ns)
std dev 2.295 ns (977.3 ps .. 3.747 ns)
benchmarking use shortNeedle in shortHaystack/Milan
time 570.7 ns (570.6 ns .. 570.8 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 570.7 ns (570.6 ns .. 570.7 ns)
std dev 194.8 ps (154.1 ps .. 262.9 ps)
benchmarking use shortNeedle in shortHaystack/Abel
time 576.8 ns (575.5 ns .. 579.5 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 576.5 ns (575.7 ns .. 578.9 ns)
std dev 5.133 ns (149.4 ps .. 9.882 ns)
benchmarking use shortNeedle in longHaystack/lib
time 194.4 μs (192.0 μs .. 195.9 μs)
0.999 R² (0.999 R² .. 1.000 R²)
mean 190.9 μs (190.2 μs .. 191.9 μs)
std dev 2.789 μs (1.938 μs .. 3.452 μs)
benchmarking use shortNeedle in longHaystack/Milan
time 169.3 μs (164.6 μs .. 171.8 μs)
0.997 R² (0.996 R² .. 0.998 R²)
mean 160.1 μs (158.1 μs .. 162.6 μs)
std dev 7.419 μs (5.720 μs .. 8.512 μs)
variance introduced by outliers: 46% (moderately inflated)
benchmarking use shortNeedle in longHaystack/Abel
time 166.4 μs (162.9 μs .. 168.4 μs)
0.998 R² (0.997 R² .. 0.999 R²)
mean 159.1 μs (157.5 μs .. 161.0 μs)
std dev 5.903 μs (4.471 μs .. 6.721 μs)
variance introduced by outliers: 35% (moderately inflated)
benchmarking use longNeedle in shortHaystack/lib
time 828.0 ns (827.8 ns .. 828.2 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 828.0 ns (827.9 ns .. 828.2 ns)
std dev 582.1 ps (339.9 ps .. 970.5 ps)
benchmarking use longNeedle in shortHaystack/Milan
time 550.0 ns (550.0 ns .. 550.1 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 550.0 ns (550.0 ns .. 550.1 ns)
std dev 223.1 ps (97.52 ps .. 438.8 ps)
benchmarking use longNeedle in shortHaystack/Abel
time 562.1 ns (562.1 ns .. 562.2 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 562.1 ns (562.1 ns .. 562.2 ns)
std dev 109.5 ps (74.48 ps .. 182.3 ps)
benchmarking use longNeedle in longHaystack/lib
time 195.7 μs (193.3 μs .. 197.3 μs)
0.999 R² (0.999 R² .. 1.000 R²)
mean 191.9 μs (191.1 μs .. 193.0 μs)
std dev 3.065 μs (2.169 μs .. 3.825 μs)
benchmarking use longNeedle in longHaystack/Milan
time 170.6 μs (165.7 μs .. 173.4 μs)
0.996 R² (0.995 R² .. 0.998 R²)
mean 160.8 μs (158.6 μs .. 163.5 μs)
std dev 7.928 μs (6.085 μs .. 9.063 μs)
variance introduced by outliers: 49% (moderately inflated)
benchmarking use longNeedle in longHaystack/Abel
time 170.4 μs (165.4 μs .. 173.2 μs)
0.996 R² (0.995 R² .. 0.997 R²)
mean 160.5 μs (158.3 μs .. 163.3 μs)
std dev 8.066 μs (6.200 μs .. 9.280 μs)
variance introduced by outliers: 50% (moderately inflated)
This is 64-bit on a recent i5.
I appreciate learning something new from this discussion, so to pay it forward please find attached a self-contained lhs for your nano-tweaking pleasure.