[Git][ghc/ghc][wip/bytecode-serialize-3] 11 commits: Handle non-fractional CmmFloats in Cmm's CBE (#26229)

Cheng Shao pushed to branch wip/bytecode-serialize-3 at Glasgow Haskell Compiler / GHC
Commits:
03555ed8 by Sylvain Henry at 2025-08-10T22:20:57-04:00
Handle non-fractional CmmFloats in Cmm's CBE (#26229)
Since f8d9d016305be355f518c141f6c6d4826f2de9a2, toRational for Float and
Double converts float's infinity and NaN into Rational's infinity and
NaN (respectively 1%0 and 0%0).
Cmm CommonBlockEliminator hashing function needs to take these values
into account as they can appear as literals now. See added testcase.
- - - - -
6c956af3 by J. Ryan Stinnett at 2025-08-10T22:21:42-04:00
Fix extensions list in `DoAndIfThenElse` docs
- - - - -
6dc420b1 by J. Ryan Stinnett at 2025-08-10T22:21:42-04:00
Document status of `RelaxedPolyRec` extension
This adds a brief extension page explaining the status of the
`RelaxedPolyRec` extension. The behaviour of this mode is already
explained elsewhere, so this page is mainly for completeness so that
various lists of extensions have somewhere to point to for this flag.
Fixes #18630
- - - - -
0ce8f9d1 by Rodrigo Mesquita at 2025-08-11T05:31:32+00:00
cleanup: Move dehydrateCgBreakInfo to Stg2Bc
This no longer has anything to do with Core.
- - - - -
9b594494 by Rodrigo Mesquita at 2025-08-11T05:31:32+00:00
rts/Disassembler: Fix spacing of BRK_FUN
- - - - -
90037367 by Rodrigo Mesquita at 2025-08-11T05:31:32+00:00
debugger: Fix bciPtr in Step-out
We need to use `BCO_NEXT` to move bciPtr to ix=1, because ix=0 points to
the instruction itself!
I do not understand how this didn't crash before.
- - - - -
996462bc by Rodrigo Mesquita at 2025-08-11T05:31:32+00:00
debugger: Allow BRK_FUNs to head case continuation BCOs
When we start executing a BCO, we may want to yield to the scheduler:
this may be triggered by a heap/stack check, context switch, or a
breakpoint. To yield, we need to put the stack in a state such that
when execution is resumed we are back to where we yielded from.
Previously, a BKR_FUN could only head a function BCO because we only
knew how to construct a valid stack for yielding from one -- simply add
`apply_interp_info` + the BCO to resume executing. This is valid because
the stack at the start of run_BCO is headed by that BCO's arguments.
However, in case continuation BCOs (as per Note [Case continuation BCOs]),
we couldn't easily reconstruct a valid stack that could be resumed
because we dropped too soon the stack frames regarding the value
returned (stg_ret) and received (stg_ctoi) by that continuation.
This is especially tricky because of the variable type and size return
frames (e.g. pointer ret_p/ctoi_R1p vs a tuple ret_t/ctoi_t2).
The trick to being able to yield from a BRK_FUN at the start of a case
cont BCO is to stop removing the ret frame headers eagerly and instead
keep them until the BCO starts executing. The new layout at the start of
a case cont. BCO is described by the new Note [Stack layout when entering run_BCO].
Now, we keep the ret_* and ctoi_* frames when entering run_BCO.
A BRK_FUN is then executed if found, and the stack is yielded as-is with
the preserved ret and ctoi frames.
Then, a case cont BCO's instructions always SLIDE off the headers of the
ret and ctoi frames, in StgToByteCode.doCase, turning a stack like
| .... |
+---------------+
| fv2 |
+---------------+
| fv1 |
+---------------+
| BCO |
+---------------+
| stg_ctoi_ret_ |
+---------------+
| retval |
+---------------+
| stg_ret_..... |
+---------------+
into
| .... |
+---------------+
| fv2 |
+---------------+
| fv1 |
+---------------+
| retval |
+---------------+
for the remainder of the BCO.
Moreover, this more uniform approach of keeping the ret and ctoi frames
means we need less ad-hoc logic concerning the variable size of
ret_tuple vs ret_p/np frames in the code generator and interpreter:
Always keep the return to cont. stack intact at the start of run_BCO,
and the statically generated instructions will take care of adjusting
it.
Unlocks BRK_FUNs at the start of case cont. BCOs which will enable a
better user-facing step-out (#26042) which is free of the bugs the
current BRK_ALTS implementation suffers from (namely, using BRK_FUN
rather than BRK_ALTS in a case cont. means we'll never accidentally end
up in a breakpoint "deeper" than the continuation, because we stop at
the case cont itself rather than on the first breakpoint we evaluate
after it).
- - - - -
56619123 by Rodrigo Mesquita at 2025-08-11T05:31:33+00:00
BRK_FUN with InternalBreakLocs for code-generation time breakpoints
At the start of a case continuation BCO, place a BRK_FUN.
This BRK_FUN uses the new "internal breakpoint location" -- allowing us
to come up with a valid source location for this breakpoint that is not associated with a source-level tick.
For case continuation BCOs, we use the last tick seen before it as the
source location. The reasoning is described in Note [Debugger: Stepout internal break locs].
Note how T26042c, which was broken because it displayed the incorrect
behavior of the previous step out when we'd end up at a deeper level
than the one from which we initiated step-out, is now fixed.
As of this commit, BRK_ALTS is now dead code and is thus dropped.
Note [Debugger: Stepout internal break locs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step-out tells the interpreter to run until the current function
returns to where it was called from, and stop there.
This is achieved by enabling the BRK_FUN found on the first RET_BCO
frame on the stack (See [Note Debugger: Step-out]).
Case continuation BCOs (which select an alternative branch) must
therefore be headed by a BRK_FUN. An example:
f x = case g x of <--- end up here
1 -> ...
2 -> ...
g y = ... <--- step out from here
- `g` will return a value to the case continuation BCO in `f`
- The case continuation BCO will receive the value returned from g
- Match on it and push the alternative continuation for that branch
- And then enter that alternative.
If we step-out of `g`, the first RET_BCO on the stack is the case
continuation of `f` -- execution should stop at its start, before
selecting an alternative. (One might ask, "why not enable the breakpoint
in the alternative instead?", because the alternative continuation is
only pushed to the stack *after* it is selected by the case cont. BCO)
However, the case cont. BCO is not associated with any source-level
tick, it is merely the glue code which selects alternatives which do
have source level ticks. Therefore, we have to come up at code
generation time with a breakpoint location ('InternalBreakLoc') to
display to the user when it is stopped there.
Our solution is to use the last tick seen just before reaching the case
continuation. This is robust because a case continuation will thus
always have a relevant breakpoint location:
- The source location will be the last source-relevant expression
executed before the continuation is pushed
- So the source location will point to the thing you've just stepped
out of
- Doing :step-local from there will put you on the selected
alternative (which at the source level may also be the e.g. next
line in a do-block)
Examples, using angle brackets (<<...>>) to denote the breakpoint span:
f x = case <<g x>> {- step in here -} of
1 -> ...
2 -> ...>
g y = <<...>> <--- step out from here
...
f x = <
participants (1)
-
Cheng Shao (@TerrorJack)