
#16052: Core optimizations for memset on a small range -------------------------------------+------------------------------------- Reporter: andrewthad | Owner: (none) Type: task | Status: new Priority: normal | Milestone: Component: Compiler | Version: 8.6.3 Keywords: | Operating System: Unknown/Multiple Architecture: | Type of failure: None/Unknown Unknown/Multiple | Test Case: | Blocked By: Blocking: | Related Tickets: Differential Rev(s): | Wiki Page: -------------------------------------+------------------------------------- I've been doing some API bindings lately that require zeroing out memory before poking values into the appropriate places. Sometimes, these are small data structures. For instance, on linux, the internet socket struct `sockaddr_in` is 16 bytes. Here's an example (not involving `sockaddr_in`) of the kind of situation that arises: {{{ {-# language MagicHash #-} {-# language UnboxedTuples #-} module FillArray ( fill ) where import GHC.Exts import GHC.IO data ByteArray = ByteArray ByteArray# fill :: IO ByteArray fill = IO $ \s0 -> case newByteArray# 24# s0 of (# s1, m #) -> case setByteArray# m 0# 24# 0# s1 of s2 -> case writeWord8Array# m 4# 14## s2 of s3 -> case writeWord8Array# m 5# 15## s3 of s4 -> case unsafeFreezeByteArray# m s4 of (# s5, r #) -> (# s5, ByteArray r #) }}} This `fill` function allocates a 24-byte array, sets everything to zero, and then writes the numbers 14 and 15 to elements 4 and 5 respectively. With `-O2`, here's the relevant part of the core we get: {{{ fill1 fill1 = \ s0_a140 -> case newByteArray# 24# s0_a140 of { (# ipv_s16i, ipv1_s16j #) -> case setByteArray# ipv1_s16j 0# 24# 0# ipv_s16i of s2_a143 { __DEFAULT -> case writeWord8Array# ipv1_s16j 4# 14## s2_a143 of s3_a144 { __DEFAULT -> case writeWord8Array# ipv1_s16j 5# 15## s3_a144 of s4_a145 { __DEFAULT -> case unsafeFreezeByteArray# ipv1_s16j s4_a145 of { (# ipv2_s16p, ipv3_s16q #) -> (# ipv2_s16p, ByteArray ipv3_s16q #) } } } } } }}} And, here's the relevant assembly: {{{ fill1_info: _c1kL: addq $56,%r12 cmpq 856(%r13),%r12 ja _c1kP _c1kO: movq $stg_ARR_WORDS_info,-48(%r12) movq $24,-40(%r12) leaq -48(%r12),%rax subq $8,%rsp leaq 16(%rax),%rdi xorl %esi,%esi movl $24,%edx movq %rax,%rbx xorl %eax,%eax call memset addq $8,%rsp movb $14,20(%rbx) movb $15,21(%rbx) movq $ByteArray_con_info,-8(%r12) movq %rbx,(%r12) leaq -7(%r12),%rbx jmp *(%rbp) _c1kP: movq $56,904(%r13) movl $fill1_closure,%ebx jmp *-8(%r13) .size fill1_info, .-fill1_info }}} What a bummer that using `memset` for something as small setting three machine words (on a 64 bit platform) results in a `call` instruction getting generated. Why not simply generate three `movb` instructions for the zero initialization instead? Currently, users can work around this by translating their `setByteArray#` call to several `writeWordArray#` calls. This optimization obscures the meaning of written code and is not portable across architectures (so you have to use `CPP` to make it work on 32 bit and 64 bit). I'd like to add a cmm-to-assembly optimization to GHC that does unrolling instead so that the user can write more natural code. Specifically, here's what I'm thinking: * This only happens when the offset into the `ByteArray#` and the length of the range are constant that are multiples of the machine word size. So, `setByteArray# arr 8# 16# x` is eligible on 32-bit and 64-bit platforms. And `setByteArray# arr 4# 8# x` is eligible only on a 32-bit platform. And `setByteArray# arr 16# y x` is not eligible on any platform. * This only happens when the `call memset` instruction has a range of 32 bytes or less. -- Ticket URL: http://ghc.haskell.org/trac/ghc/ticket/16052 GHC http://www.haskell.org/ghc/ The Glasgow Haskell Compiler