
#8848: Warning: Rule too complicated to desugar ------------------------------------+------------------------------------- Reporter: carter | Owner: Type: bug | Status: new Priority: normal | Milestone: Component: Compiler | Version: 7.8.1-rc2 Keywords: | Operating System: Unknown/Multiple Architecture: Unknown/Multiple | Type of failure: None/Unknown Difficulty: Unknown | Test Case: Blocked By: | Blocking: Related Tickets: | ------------------------------------+------------------------------------- I've a very very modest application of Specialize to fixed sized lists in some of my code which seems to trip up the specialization machinery. Is there any flags I can pass GHC to make sure it doesn't give up on these specialize calls? is the only work around to write my own monomorphic versions and add some hand written rewrite rules?! {{{ rc/Numerical/Types/Shape.hs:225:1: Warning: RULE left-hand side too complicated to desugar let { $dFunctor_a3XB :: Functor (Shape ('S 'Z)) [LclId, Str=DmdType] $dFunctor_a3XB = Numerical.Types.Shape.$fFunctorShape @ 'Z $dFunctor_a3Rn } in map2 @ a @ b @ c @ ('S ('S 'Z)) (Numerical.Types.Shape.$fApplicativeShape @ ('S 'Z) (Numerical.Types.Shape.$fFunctorShape @ ('S 'Z) $dFunctor_a3XB) (Numerical.Types.Shape.$fApplicativeShape @ 'Z $dFunctor_a3XB Numerical.Types.Shape.$fApplicativeShape0)) src/Numerical/Types/Shape.hs:226:1: Warning: RULE left-hand side too complicated to desugar let { $dFunctor_a3XG :: Functor (Shape ('S 'Z)) [LclId, Str=DmdType] $dFunctor_a3XG = Numerical.Types.Shape.$fFunctorShape @ 'Z $dFunctor_a3Rn } in let { $dFunctor_a3XF :: Functor (Shape ('S ('S 'Z))) [LclId, Str=DmdType] $dFunctor_a3XF = Numerical.Types.Shape.$fFunctorShape @ ('S 'Z) $dFunctor_a3XG } in map2 @ a @ b @ c @ ('S ('S ('S 'Z))) (Numerical.Types.Shape.$fApplicativeShape @ ('S ('S 'Z)) (Numerical.Types.Shape.$fFunctorShape @ ('S ('S 'Z)) $dFunctor_a3XF) (Numerical.Types.Shape.$fApplicativeShape @ ('S 'Z) $dFunctor_a3XF (Numerical.Types.Shape.$fApplicativeShape @ 'Z $dFunctor_a3XG Numerical.Types.Shape.$fApplicativeShape0))) }}} the associated code (smashed into a single module ) is {{{ {-# LANGUAGE DataKinds, GADTs, TypeFamilies, ScopedTypeVariables #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE NoImplicitPrelude #-} module Numerical.Types.Shape where import GHC.Magic import Data.Data import Data.Typeable() import Data.Type.Equality import qualified Data.Monoid as M import qualified Data.Functor as Fun import qualified Data.Foldable as F import qualified Control.Applicative as A import Prelude hiding (foldl,foldr,init,scanl,scanr,scanl1,scanr1) data Nat = S !Nat | Z deriving (Eq,Show,Read,Typeable,Data) #if defined(__GLASGOW_HASKELL_) && (__GLASGOW_HASKELL__ >= 707) deriving instance Typeable 'Z deriving instance Typeable 'S #endif type family n1 + n2 where Z + n2 = n2 (S n1') + n2 = S (n1' + n2) -- singleton for Nat data SNat :: Nat -> * where SZero :: SNat Z SSucc :: SNat n -> SNat (S n) --gcoerce :: (a :~: b) -> ((a ~ b) => r) -> r --gcoerce Refl x = x --gcoerce = gcastWith -- inductive proof of right-identity of + plus_id_r :: SNat n -> ((n + Z) :~: n) plus_id_r SZero = Refl plus_id_r (SSucc n) = gcastWith (plus_id_r n) Refl -- inductive proof of simplification on the rhs of + plus_succ_r :: SNat n1 -> Proxy n2 -> ((n1 + (S n2)) :~: (S (n1 + n2))) plus_succ_r SZero _ = Refl plus_succ_r (SSucc n1) proxy_n2 = gcastWith (plus_succ_r n1 proxy_n2) Refl type N0 = Z type N1= S N0 type N2 = S N1 type N3 = S N2 type N4 = S N3 type N5 = S N4 type N6 = S N5 type N7 = S N6 type N8 = S N7 type N9 = S N8 type N10 = S N9 {- Need to sort out packed+unboxed vs generic approaches see ShapeAlternatives/ for -} infixr 3 :* {- the concern basically boils down to "will it specialize / inline well" -} newtype At a = At a deriving (Eq, Ord, Read, Show, Typeable, Functor) data Shape (rank :: Nat) a where Nil :: Shape Z a (:*) :: !(a) -> !(Shape r a ) -> Shape (S r) a --deriving (Show) #if defined(__GLASGOW_HASKELL_) && (__GLASGOW_HASKELL__ >= 707) deriving instance Typeable Shape #endif instance Eq (Shape Z a) where (==) _ _ = True instance (Eq a,Eq (Shape s a))=> Eq (Shape (S s) a ) where (==) (a:* as) (b:* bs) = (a == b) && (as == bs ) instance Show (Shape Z a) where show _ = "Nil" instance (Show a, Show (Shape s a))=> Show (Shape (S s) a) where show (a:* as) = show a ++ " :* " ++ show as -- at some point also try data model that -- has layout be dynamicly reified, but for now -- keep it phantom typed for sanity / forcing static dispatch. -- NB: may need to make it more general at some future point --data Strided r a lay = Strided { getStrides :: Shape r a } {-# INLINE reverseShape #-} reverseShape :: Shape n a -> Shape n a reverseShape Nil = Nil reverseShape list = go SZero Nil list where go :: SNat n1 -> Shape n1 a-> Shape n2 a -> Shape (n1 + n2) a go snat acc Nil = gcastWith (plus_id_r snat) acc go snat acc (h :* (t :: Shape n3 a)) = gcastWith (plus_succ_r snat (Proxy :: Proxy n3)) (go (SSucc snat) (h :* acc) t) instance Fun.Functor (Shape Z) where fmap = \ _ Nil -> Nil --{-# INLINE fmap #-} instance (Fun.Functor (Shape r)) => Fun.Functor (Shape (S r)) where fmap = \ f (a :* rest) -> f a :* Fun.fmap f rest --{-# INLINE fmap #-} instance A.Applicative (Shape Z) where pure = \ _ -> Nil --{-# INLINE pure #-} (<*>) = \ _ _ -> Nil --{-# INLINE (<*>) #-} instance A.Applicative (Shape r)=> A.Applicative (Shape (S r)) where pure = \ a -> a :* (A.pure a) --{-# INLINE pure #-} (<*>) = \ (f:* fs) (a :* as) -> f a :* (inline (A.<*>)) fs as --{-# INLINE (<*>) #-} instance F.Foldable (Shape Z) where foldMap = \ _ _ -> M.mempty --{-# fold #-} foldl = \ _ init _ -> init foldr = \ _ init _ -> init foldr' = \_ !init _ -> init foldl' = \_ !init _ -> init instance (F.Foldable (Shape r)) => F.Foldable (Shape (S r)) where foldMap = \f (a:* as) -> f a M.<> F.foldMap f as foldl' = \f !init (a :* as) -> let next = f init a in next `seq` F.foldl f next as foldr' = \f !init (a :* as ) -> f a $! F.foldr f init as foldl = \f init (a :* as) -> let next = f init a in F.foldl f next as foldr = \f init (a :* as ) -> f a $ F.foldr f init as -- map2 :: (A.Applicative (Shape r))=> (a->b ->c) -> (Shape r a) -> (Shape r b) -> (Shape r c ) map2 = \f l r -> A.pure f A.<*> l A.<*> r {-# SPECIALIZE map2 :: (a->b->c)-> (Shape Z a )-> Shape Z b -> Shape Z c #-} {-# SPECIALIZE map2 :: (a->b->c)-> (Shape (S Z) a )-> Shape (S Z) b -> Shape (S Z) c #-} {-# SPECIALIZE map2 :: (a->b->c)-> (Shape (S (S Z)) a )-> Shape (S (S Z)) b -> Shape (S (S Z)) c #-} {-# SPECIALIZE map2 :: (a->b->c)-> (Shape (S (S(S Z))) a )-> Shape (S (S (S Z))) b -> Shape (S (S(S Z))) c #-} -- {-# INLINABLE map2 #-} }}} -- Ticket URL: http://ghc.haskell.org/trac/ghc/ticket/8848 GHC http://www.haskell.org/ghc/ The Glasgow Haskell Compiler