
Equality constraints can also appear in class and instance contexts. The
#13657: Documentation: Functional dependencies by other means -------------------------------------+------------------------------------- Reporter: AntC | Owner: (none) Type: bug | Status: new Priority: normal | Milestone: Component: Documentation | Version: 8.0.1 Keywords: | Operating System: Unknown/Multiple Architecture: | Type of failure: Documentation Unknown/Multiple | bug Test Case: | Blocked By: Blocking: | Related Tickets: 10431 Differential Rev(s): | Wiki Page: -------------------------------------+------------------------------------- There's an idiom that's briefly mentioned under Equality constraints [section 10.14.1], but is more general and more powerful. The trouble: is where to document it? Because you get the power from a combination of extensions: * -XMultiParamTypeClasses [10.8.1.1] * Superclass constraints, which can also be MultiParam [10.8.1.2] * -XFunctionalDependencies [10.8.2] * and/or superclass Equality constraints with Type families, having the effect of FunDeps [10.14.1] * The overall effect can satisfy the FunDep Coverage conditions, which means you might not need -XUndecidableInstances [10.8.3.5] 10.14.1 says: former enable a simple translation of programs using functional dependencies into programs using family synonyms instead. That's not wrong; but by talking about "class and instance contexts" in the same breath does fail to emphasise that: * whereas Instance constraints don't apply until after the instance has been selected\\(And it's a common newbie mistake to think they restrict the selection.) * superclass constraints apply during type improvement __before__ selecting instances\\as described here http://stackoverflow.com/questions/35252562/find-an-element-in-an- hlist/35260970#35260970 "superclass context is critical ..." [thanks @DFeuer] * This behaviour means that even if you don't explicitly put a FunDep `| ... -> ...` on a class: * If you put a superclass equality constraint on a class, that induces a FunDep as explained in 10.14.1; but just as much * If you put a superclass __class__ constraint on a class, and that superclass has a FunDep, that also induces a FunDep. * and so on for a superclass constraint of a superclass constraint of a superclass constraint .... I suggest the bulk of the write-up goes under a new sub-section for FunDeps: ---- == 10.8.2.3 Functional dependency-like behaviour through superclass constraints Constraints in the class context can achieve the effect of Functional dependencies even without the explicit vertical bar and dependency arrow syntax in the class declaration. Either: * Using an Equality constraint to a Type family [10.14.1]; or * A superclass constraint that does have an explicit Functional dependency. * Or a superclass constraint which is itself constrained in one of those ways. A class declaration of the form {{{ class C a b | a -> b }}} can equivalently be given as {{{ class (F a ~ b) => C a b where type F a }}} That is, we represent every functional dependency (FD) `a1 .. an -> b` by an FD type family `F a1 .. an` and a superclass context equality `F a1 .. an ~ b`, essentially giving a name to the functional dependency. [See 10.14.1; using `(~)` needs -XTypeFamilies or -XGADTs.] In class instances, we define the type instances of FD families in accordance with the class head. Or class `C` can equivalently be given as {{{ class (D a b) => C a b ... class D a b | a -> b -- or class (G a ~ b) => D a b where type G a }}} The class instances for `D` will closely follow those for `C`. So there is not much gain in expressivity. Consider also: {{{ class (D a c) => E a b c ... -- class D as above }}} for which the `D` instances will be more compact than `E`. Note that `D` might not declare any methods, but merely be used for type improvement. Method signatures for class `C` are not affected by either of these ways for achieving dependencies. ---- Reference this thread: https://mail.haskell.org/pipermail/glasgow-haskell- users/2017-April/026515.html, with some fancier examples of pseudo- FunDeps. See also #10431. Is this power made clear in the theoretical literature? It's kinda implicit in the TypeFamilies2008 paper; but note that was written concurrently with Type Families development; and published before the work was completed. Specifically, supporting Type Families and `(~)` in superclass constraints was delivered a long time after the rest of the work. -- Ticket URL: http://ghc.haskell.org/trac/ghc/ticket/13657 GHC http://www.haskell.org/ghc/ The Glasgow Haskell Compiler