
Hi all I am curious as to why the List.sort implementation in GHC is a quicksort algorithm rather than an algorithm that guarantees n log n time in the worst case? I have attached a mergesort implementation along with a few scripts to time it's performance, the results of which are shown below (* means it didn't finish successfully - in all cases this was due to a stack overflow). I am also curious as to the cause of the last failure (this is using the attached mergesort to sort random_list = take 100000 $ randoms $ mkStdGen 100) as it manages with sorted = [1 .. 100000] and revsorted = reverse [1 .. 100000]. Is this because of some optimisations being done for the (rev)sorted cases or is it a problem with randoms? If I heap profile the random_list case with only 10000 then I see random_list peaks at using about 2.5M of memory, whereas in the same program using List.sort it uses only 100k. Input style Input length Sort data Sort alg User time stdin 10000 random_list sort 2.82 stdin 10000 random_list mergesort 2.96 stdin 10000 sorted sort 31.37 stdin 10000 sorted mergesort 1.90 stdin 10000 revsorted sort 31.21 stdin 10000 revsorted mergesort 1.88 stdin 100000 random_list sort * stdin 100000 random_list mergesort * stdin 100000 sorted sort * stdin 100000 sorted mergesort * stdin 100000 revsorted sort * stdin 100000 revsorted mergesort * func 10000 random_list sort 0.31 func 10000 random_list mergesort 0.91 func 10000 sorted sort 19.09 func 10000 sorted mergesort 0.15 func 10000 revsorted sort 19.17 func 10000 revsorted mergesort 0.16 func 100000 random_list sort 3.85 func 100000 random_list mergesort * func 100000 sorted sort 5831.47 func 100000 sorted mergesort 2.23 func 100000 revsorted sort 5872.34 func 100000 revsorted mergesort 2.24 Any comments gratefully received Thanks Ian