
Mike Aizatsky wrote:
It's quite good. It reminds me the quirks Alexandrescu does in his "Modern C++ Design" or here http://osl.iu.edu/~tveldhui/papers/Template-Metaprograms/meta-art.html . Since type system allows implementation of natural arithmetic, do you know, is it Turing-complete?
Yes, C. McBride and T. Hallgren and others have done earlier examples of what they or we call faked dependently programming or type-level programming. It is not just Turing complete, it is phantastic. By using type equality and other goodies, we got pretty far.
But I still would like to write type signatures for methods, operating with HLists. Or should I make all my list processing functions to be classes (like hfold) and to add type constraints in class definition? This sounds like a serious development overhead for me.
Yes, we favour a dedicated class per method. Everything beyond that is future work / current research. Agreed: faking is faking. We want better support for this style.
(i) I like comparing Haskell datatypes with Java classes.
But Java classes also contain t methods. What would you call methods in Haskell? Functions on datatypes?
Java's methods end up in Haskell as methods in the type classes. Clearly, the data part can still comprise higher-order functions. BTW: if you like, think of Java methods as AspectJ introductions. Java classes are empty (with regard to methods) when you begin. One way to think of it. So with AspectJ you can modularise in ways that Haskell suggests anyhow :-)
You end up with creating quite a complicate and non-trivial library for just implementing something like List<Interface>.
Heterogeneous lists are perhaps an overkill for polymorphic lists modulo subtyping. But there are *many* tradeoffs. For instance, the perhaps easier to comprehend version with existentials and type-safe cast has these problems: - the \exists makes the data opaque; so one better anticipates all operations that are eventually needed in constraints. - polymorphic recursion and existstentials don't quite nicely go together. - you need the wrapper constructor to point out existential quantification.
I don't see a way to store functions in a file. That's the task Clean Dynamics solve.
I guess others know better than I. Storing functions isn't possible AFAIK, with Haskell's Dynamics/Read/Show, what else? Similar problems for existentially quantified data. For the rest, read/show and variations are Ok. Yes, Clean's Dynamics are cool.
-- Yet another heterogeneous equality yaHEq :: (Typeable a, Typeable b, Eq a) => a -> b -> Bool yaHEq a b = case cast b of Just a' -> a == a' Nothing -> False
Cool! Do you know anything about cast performance?
It is implemented rather efficiently in Data.Dynamics, say one Int per type. So it is basically the cost of Int comparison, but I don't have performance figures at hand. There is certainly a kind of startup overhead. Say all the Ints have to be produced and registered somewhere, but once all types are around it should be like Int comparison.
The only issue is to get rid of AnyMyInterface around the code. Can you explain me why
type MyList = forall a. (MyInterface a) => [a] list1 :: MyList list1 = [MyImplementation1 10, MyImplementation2 20]
doesn't work? Ghc gives pretty obscure (for me) error message:
Cannot unify the type-signature variable `a' with the type `MyImplementation1' Expected type: a Inferred type: MyImplementation1 In the application `MyImplementation1 10' In the list element: MyImplementation1 10
I guess you want the forall to be an existential quantifier. Anyway, the way the forall is placed, it is really a universal one. So you are saying that you want to get a list of polymorphic implementations, but your actual list comprises actual implementations. So the error message is right. Perhaps enjoy some of this discussion: http://www.haskell.org/pipermail/haskell/2004-February/013600.html
PS The sample in your previous post doesn't run due to lack of hMapOut
Do you mean that I did not include the hMapOut code? -- Map a heterogeneous list to a homogeneous one class HMapOut f r e where hMapOut :: f -> r -> [e] instance HMapOut f HNil e where hMapOut _ _ = [] instance ( HMapOut f l e' , HApply f e e' ) => HMapOut f (HCons e l) e' where hMapOut f (HCons e l) = hApply f e : hMapOut f l I double-checked that the downloadable sources run:
ghci gh-users-040607.hs works.
BTW, yesterday, I really forgot to include this interesting Eq instance: instance Eq AnyMyInterface where (AnyMyInterface x) == (AnyMyInterface y) = x `yaHEq` y Cheers, Ralf