
Indeed, I did look at FGL. It's beautiful. It has a bug that does not
permit multiedges in directed graphs, which I need. More importantly,
though, I'm just not ready for it. I have hardly written anything bigger
than a screenful of text in Haskell. If I try using a lot of things I don't
yet understand in addition to the base language I get discouraged.
On Fri, Mar 6, 2015 at 2:25 AM, Benjamin Edwards
Have you looked at fgl? I would also read the paper that went with the library. It has some nice notions of graph decomposition, and reading the source for bfs et al should give you a good idea of how to mix in state like 'what have I visited'.
Ben
On Fri, 6 Mar 2015 2:46 am Jeffrey Brown
wrote: Suppose I have a general (not a tree) directed graph, and I would like to find all the "pure descendents" of a node N -- that is, all nodes M for which (1) N is an ancestor of M, and (2) every partial or maximal sequence of predecessors starting from M either consists entirely of descendents of N, or else includes N itself.
I have an imperative algorithm (below) for doing that. I want to know how hard it would be to implement in Haskell. It's complex, but basically it sets up a few lists like "members of this list have had all their descendents processed", "members of this list have been processed but their descendents have not been", "members of this list have not been processed at all", etc. Then I iterate through the graph, moving nodes from one collection to the other until the "to be processed" list is empty.
I would like a function Graph -> Graph that does that and does not need to rely on a monad. The only way I can think of involves a few mutually recursive functions, each of which passes not only the original graph of interest, but all the lists described in the previous paragraph, around to the others. I don't understand Haskell's evaluation strategy well enough to anticipate the result, but my vague sense is that a lot of copies of the same data would be floating around, ruining the speed of it.
Python code for the algorithm: def descendedOnlyFrom(gset): "All Gnodes n for which every ancestry of n includes a Gnode in gset (which can be a set or a list)." # For efficiency improvement ideas and verbose comments, # see treeSearch/all.py/node.descendedOnlyFrom if 1: # variables # "pure" = "descended only from the calling Glist" pe = set(gset) # determined Pure, yet to Explore children of pf = set() # determined Pure, Finished exploring children of pb = set(gset) # determined Pure, Both kinds: pe | pf ud = set() # purity UnDetermined # descended from root, but might have parents outside of pb udp = {} # "Parents of the UnDetermined" # This is a dictionary, from gnodes to sets of gnodes. # The other four variables are sets. while pe: while pe: k = 1 i = pe.pop(); pf.add(i) for c in set(i._children()): if c in pb | ud: continue # If already handled, do not repeat. if set(c._parents()) <= pb: pe.add(c); pb.add(c) else: ud.add(c); udp[c] = set(c._parents()) - pb for i in ud: ipf = udp[i] & pb # (i)'s (p)arents newly (f)ound in pb if ipf: udp[i] -= ipf if udp[i]==set(): ud.remove(i); del( udp[i] ) pe.add(i); pb.add(i) break return pb _______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe