
11 Dec
2012
11 Dec
'12
3:47 p.m.
If you're trying to memoize a recursive algorithm with a global array of previous states, you could use the marvellous MemoTrie package [1]. It lets you write your algorithm recursively, while getting all the benefits of memoization! Here's an example with the fibonacci function: fib :: Int -> Integer fib 0 = 1 fib 1 = 1 fib n = memofib (n - 2) + memofib (n - 1) memofib :: Int -> Integer memofib = memo fib > memofib 113 -- runs in O(n), with (permanent!) memory usage also at O(n). - Clark [1] http://hackage.haskell.org/package/MemoTrie On Tue, Dec 11, 2012 at 2:59 PM, Serguey Zefirovwrote: > This array is for dynamic programming. > > You can diagonalize it into a list and use technique similar to the > Fibonacci numbers. > > The resulting solution should be purely declarative. > > 2012/12/11 mukesh tiwari : > > Hello All > > I am trying to transform this C++ code in Haskell. In case any one > > interested this is solution of SPOJ problem. > > > > #include > > #include > > #include > > using namespace std; > > > > int memo[1100][1100] ; > > > > int recurse( int h , int a , int cnt , bool flag ) > > { > > if ( h <= 0 || a <= 0 ) return cnt ; > > if ( memo[h][a] ) return memo[h][a] ; > > if ( flag ) memo[h][a] = recurse ( h + 3 , a + 2 , cnt + 1 , > !flag ) > > ; > > else > > memo[h][a] = max ( memo[h][a] , max ( recurse ( h - 5 , a - 10 > , > > cnt + 1 , !flag ) , recurse ( h - 20 , a + 5 , cnt + 1 , !flag ) ) ) ; > > > > return memo[h][a]; > > } > > > > int main() > > { > > int n , a , b ; > > scanf( "%d", &n ); > > for(int i = 0 ; i < n ; i++) > > { > > memset ( memo , 0 , sizeof memo ) ; > > scanf("%d%d", &a , &b ); > > printf("%d\n" , recurse( a , b , -1 , 1 )); > > if( i != ( n - 1 ) ) printf("\n"); > > } > > > > } > > > > I am stuck with that memo[1100][1100] is global variable so I tried to > solve > > this problem using state monad ( Don't know if its correct approach or > not ) > > but it certainly does not seem correct to me. Till now I came up with > code. > > Could some one please tell me how to solve this kind of problem ( > Generally > > we have a global variable either multi dimensional array or map and we > > store the best values found so far in the table ). > > > > import qualified Data.Map.Strict as SM > > import Control.Monad.State > > > > {-- > > funsolve_WF :: Int -> Int -> Int -> Int > > funsolve_WF h a cnt > > | h <= 0 || a <= 0 = cnt > > | otherwise = funsolve_Air h a ( cnt + 1 ) > > > > funsolve_Air :: Int -> Int -> Int -> Int > > funsolve_Air h a cnt = max ( funsolve_WF ( h + 3 - 5 ) ( a + 2 - 10 ) > cnt' ) > > ( funsolve_WF ( h + 3 - 20 ) ( a + 2 + 5 ) cnt' ) where > > cnt' = cnt + 1 > > --} > > > > > > > > funSolve :: Int -> Int -> Int -> Bool -> State ( SM.Map ( Int , Int ) > Int ) > > Int > > funSolve hl am cnt f > > | hl <= 0 && am <= 0 = return cnt > > | otherwise = do > > mp <- get > > case () of > > _| SM.member ( hl , am ) mp -> return mp SM.! ( hl , am ) > > | f -> do > > --here I have to insert the value return by > function > > funSolve ( hl + 3 ) ( am + 2 ) ( cnt + 1 ) ( not f ) to map whose key > is ( > > hl , am ) > > let k = evalState ( funSolve ( hl + 3 ) ( am + 2 > ) > > ( cnt + 1 ) ( not f ) ) mp > > modify ( SM.insert ( hl , am ) k ) > > > > > > | otherwise -> do > > do > > let k_1 = evalState ( funSolve ( hl - 5 ) ( am > - 10 > > ) ( cnt + 1 ) ( not f ) ) mp > > k_2 = evalState ( funSolve ( hl - 20 ) ( am > + 5 > > ) ( cnt + 1 ) ( not f ) ) mp > > k_3 = mp SM.! ( hl , am ) > > modify ( SM.insert ( hl , am ) ( maximum [ k_1 , > > k_2 , k_3 ] ) ) > > > > Regards > > Mukesh Tiwari > > > > _______________________________________________ > > Haskell-Cafe mailing list > > Haskell-Cafe@haskell.org > > http://www.haskell.org/mailman/listinfo/haskell-cafe > > > > _______________________________________________ > Haskell-Cafe mailing list > Haskell-Cafe@haskell.org > http://www.haskell.org/mailman/listinfo/haskell-cafe >