
That's a horrible definition of fromRational. Use
fromRational = P.fromRational.
On Fri, Mar 20, 2009 at 9:09 PM, Lauri Oksanen
Thanks for answers. Here is some working code if somebody plays later with similar things.
{-# OPTIONS -XNoImplicitPrelude -XFunctionalDependencies -XMultiParamTypeClasses -XFlexibleInstances #-} module Test ( Integer , Double , fromInteger , fromRational , (+) ) where import Prelude (Integer, Double) import qualified Prelude as P import qualified GHC.Real
fromInteger :: Integer -> Integer fromInteger = P.id
fromRational :: P.Rational -> Double fromRational (n GHC.Real.:% d) = let n' = P.fromInteger n :: Double d' = P.fromInteger d :: Double in n' P./ d'
-- Prelude types ---------
instance Semigroup Integer where plus = (P.+) instance Semigroup Double where plus = (P.+) instance Subset Integer Double where embed = P.fromInteger
-- Class hierarchy ---------
class Plus a b c | a b -> c where (+) :: a -> b -> c
class Semigroup a where plus :: a -> a -> a
class Subset a b where embed :: a -> b
instance (Semigroup a) => (Plus a a a) where (+) = plus
-- Coercion rules ---------
instance Plus Double Integer Double where x + j = x + (embed j :: Double) instance Plus Integer Double Double where j + x = (embed j :: Double) + x
Ps. I'm very interested in hearing, if somebody has ideas, how to generalize the coercion rules to something like
instance (Semigroup a) => (Subset b a) => (Plus a b a) where x + j = x + (embed j)
- Lauri
On Fri, Mar 20, 2009 at 3:58 PM, Lennart Augustsson
wrote: I think your best bet is -fno-implicit-prelude, and defining fromInteger = id :: Integer->Integer.
_______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://www.haskell.org/mailman/listinfo/haskell-cafe