
Jan Christiansen wrote:
On Jan 2, 2012, at 2:34 PM, Heinrich Apfelmus wrote:
Without an explicit guarantee that the function is incremental, we can't do anything here. But we can just add another constructor to that effect if we turn ListTo into a GADT:
data ListTo a b where CaseOf :: b -> (a -> ListTo a b) -> ListTo a b Fmap :: (b -> c) -> ListTo a b -> ListTo a c
FmapCons :: b -> ListTo a [b] -> ListTo a [b]
I did not follow your discussion but how about using an additional GADT for the argument of Fmap, that is
data Fun a b where Fun :: (a -> b) -> Fun a b Cons :: a -> Fun [a] [a]
data ListTo a b where CaseOf :: b -> (a -> ListTo a b) -> ListTo a b Fmap :: Fun b c -> ListTo a b -> ListTo a c
and provide a function to interpret this data type as well
interpretFun :: Fun a b -> a -> b interpretFun (Fun f) = f interpretFun (Cons x) = (x:)
for the sequential composition if I am not mistaken.
(<.) :: ListTo b c -> ListTo a [b] -> ListTo a c (CaseOf _ cons) <. (Fmap (Cons y) b) = cons y <. b (Fmap f a) <. (Fmap g b) = Fmap f $ a <. (Fmap g b) a <. (CaseOf nil cons) = CaseOf (interpret a nil) ((a <.) . cons) a <. (Fmap f b) = fmap (interpret a . interpretFun f) b
-- functor instance instance Functor (ListTo a) where fmap f = normalize . Fmap (Fun f)
normalize :: ListTo a b -> ListTo a b normalize (Fmap (Fun f) (Fmap (Fun g) c)) = fmap (f . g) c normalize x = x
Cheers, Jan
Nice, that is a lot simpler indeed, and even closer to the core of the idea. Best regards, Heinrich Apfelmus -- http://apfelmus.nfshost.com