
* oleg@okmij.org
As others have pointed out, _in principle_, foldr is not at all deficient. We can, for example, express foldl via foldr. Moreover, we can express head, tail, take, drop and even zipWith through foldr. That is, the entire list processing library can be written in terms of foldr:
http://okmij.org/ftp/Algorithms.html#zip-folds
That said, to express foldl via foldr, we need a higher-order fold. There are various problems with higher-order folds, related to the cost of building closures. The problems are especially severe in strict languages or strict contexts. Indeed,
foldl_via_foldr f z l = foldr (\e a z -> a (f z e)) id l z
first constructs the closure and then applies it to z. The closure has the same structure as the list -- it is isomorphic to the list. However, the closure representation of a list takes typically quite more space than the list. So, in strict languages, expressing foldl via foldr is a really bad idea. It won't work for big lists.
If we unroll foldr once (assuming l is not empty), we'll get \z -> foldr (\e a z -> a (f z e)) id (tail l) (f z (head l)) which is a (shallow) closure. In order to observe what you describe (a closure isomorphic to the list) we'd need a language which does reductions inside closures. Am I wrong? Roman