
Hi, I have an school assignment that asks to implement an truth table of propositional formulas. I'm having difficulties in the following part: data Prop = Var Char | Not Prop | And Prop Prop | Or Prop Prop type Subst = [(Char,Bool)] - Define a function bools :: Int -> [[Bool]] that calculates all possible lists of logical values of a specific length. For example, bools 2 should give the following list: [[False,False], [False,True ], [True ,False], [True ,True ]] - Define a function substs :: Prop -> [Subst] that calculates all possible substitutions for the variables of a proposition. For example, substs p2 should give the following list: [[('A',False),('B',False)], [('A',False),('B',True) ], [('A',True) ,('B',False)], [('A',True) ,('B',True) ]] I would be thankful for any help. Douglas Matoso ************************************************************************************************** ** Este email foi scaneado contra virus e conteudo malicioso ** **************************************************************************************************