
Actually, I see a nice pattern here for unamb + pattern matching:
zip xs ys = foldr unamb undefined [p1 xs ys, p2 xs ys, p3 xs ys] where p1 [] _ = [] p2 _ [] = [] p3 (x:xs) (y:ys) = (x,y) : zip xs ys
Basically, split each pattern out into a separate function (which by definition is _|_ if there is no match), then use unamb to combine them. The invariant you need to maintain is that potentially overlapping pattern matches (p1 and p2, here) must return the same result. With a little typeclass hackery you could turn this into
zip = unambPatterns [p1,p2,p3] where {- p1, p2, p3 as above -}
Sadly, I believe the performance of "parallel-or"-style operations is
pretty hideous right now. Conal?
-- ryan
On Mon, Jan 19, 2009 at 2:42 PM, Conal Elliott
I second Ryan's recommendation of using unamb [1,2,3] to give you unbiased (symmetric) laziness.
The zip definition could also be written as
zip xs@(x:xs') ys@(y:ys') = assuming (xs == []) [] `unamb` assuming (ys == []) [] `unamb` (x,y) : zip xs' ys'
The 'assuming' function yields a value if a condition is true and otherwise is bottom:
assuming :: Bool -> a -> a assuming True a = a assuming False _ = undefined
This zip definition is a special case of the annihilator pattern, so
zip = parAnnihilator (\ (x:xs') (y:ys') -> (x,y) : zip xs' ys') []
where 'parAnnihilator' is defined in Data.Unamb (along with other goodies) as follows:
parAnnihilator :: Eq a => (a -> a -> a) -> a -> (a -> a -> a) parAnnihilator op ann x y = assuming (x == ann) ann `unamb` assuming (y == ann) ann `unamb` (x `op` y)
[1] http://haskell.org/haskellwiki/Unamb [2] http://hackage.haskell.org/packages/archive/unamb/latest/doc/html/Data-Unamb... [3] http://conal.net/blog/tag/unamb/
- conal
On Mon, Jan 19, 2009 at 12:27 PM, Ryan Ingram
wrote: On Mon, Jan 19, 2009 at 9:10 AM, ChrisK
wrote: Consider that the order of pattern matching can matter as well, the simplest common case being zip:
zip xs [] = [] zip [] ys = [] zip (x:xs) (y:ys) = (x,y) : zip xs ys
If you are obsessive about least-strictness and performance isn't a giant concern, this seems like a perfect use for Conal's unamb[1] operator.
zipR xs [] = [] zipR [] ys = [] zipR (x:xs) (y:ys) = (x,y) : zip xs ys
zipL [] ys = [] zipL xs [] = [] zipL (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys = unamb (zipL xs ys) (zipR xs ys)
This runs both zipL and zipR in parallel until one of them gives a result; if neither of them is _|_ they are guaranteed to be identical, so we can "unambiguously choose" whichever one gives a result first.
-- ryan
[1] http://conal.net/blog/posts/functional-concurrency-with-unambiguous-choice/ _______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://www.haskell.org/mailman/listinfo/haskell-cafe