
While you're absolutely correct and I agree with you, to be fair,
essentially all mathematicians have a sense of "rigourisability"
(whether they recognise it or not), which is a peculiar standard that
they apply to everything they hear or read. The level of rigour at
which mathematicians communicate is designed not to bore the listener
with details that they could easily supply for themselves, being an
intelligent mathematician, and not a mechanical abstraction.
- Cale
2009/1/15 Derek Elkins
Actually programming requires -far more- precision than mathematics ever has. The standards of "formal" and "precise" that mathematicians use are a joke to computer scientists and programmers. Communication is also more important or at least more center stage in mathematics than programming. Mathematical proofs are solely about communicating understanding and are not required to execute on a machine.
On Thu, 2009-01-15 at 18:27 +0000, Lennart Augustsson wrote:
That's very true. But programming is one where mathematical precision is needed, even if you want to call it something else.
On Thu, Jan 15, 2009 at 6:04 PM, Paul Moore
wrote: Mathematical precision isn't appropriate in all disciplines.
_______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://www.haskell.org/mailman/listinfo/haskell-cafe
_______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://www.haskell.org/mailman/listinfo/haskell-cafe