
Do you have some sort of link aggregator that auto-posts to haskell-cafe?
On Sat, May 21, 2011 at 12:09 AM, KC
Extension for "Pearls of Functional Algorithm Design" by Richard Bird, 2010, page 25 #Haskell
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
module SelectionProblem where
import Data.Array import Data.List
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
-- Question: is there a way to get the type signature as the following: -- smallest :: (Ord a) => Int -> [Array Int a] -> a
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
-- Works on 2 finite ordered disjoint sets represented as sorted arrays. smallest :: (Ord a) => Int -> (Array Int a, Array Int a) -> a smallest k (xa,ya) = search k (xa,ya) (0,m+1) (0,n+1) where (0,m) = bounds xa (0,n) = bounds ya
-- Removed some of the "indexitis" at the cost of calling another function. search :: (Ord a) => Int -> (Array Int a, Array Int a) -> (Int,Int) -> (Int,Int) -> a search k (xa,ya) (lx,rx) (ly,ry) | lx == rx = ya ! (k+ly) | ly == ry = xa ! (k+lx) | otherwise = case (xa ! mx < ya ! my) of (True) -> smallest2h k (xa,ya) ((lx,mx,rx),(ly,my,ry)) (False) -> smallest2h k (ya,xa) ((ly,my,ry),(lx,mx,rx)) where mx = (lx+rx) `div` 2 my = (ly+ry) `div` 2
-- Here the sorted arrays are in order by their middle elements. -- Only cutting the leading or trailing array by half.
-- Here xa is the first array and ya the second array by their middle elements.
smallest2h :: (Ord a) => Int -> (Array Int a, Array Int a) -> ((Int,Int,Int),(Int,Int,Int)) -> a smallest2h k (xa,ya) ((lx,mx,rx),(ly,my,ry)) = case (k<=mx-lx+my-ly) of (True) -> search k (xa,ya) (lx,rx) (ly,my) (False) -> search (k-(mx-lx)-1) (xa,ya) (mx+1,rx) (ly,ry)
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
-- Works on 3 finite ordered disjoint sets represented as sorted arrays.
smallest3 :: (Ord a) => Int -> (Array Int a, Array Int a, Array Int a) -> a smallest3 k (xa,ya,za) = -- On each recursive call the order of the arrays can switch. search3 k (xa,ya,za) (0,bx+1) (0,by+1) (0,bz+1) where (0,bx) = bounds xa (0,by) = bounds ya (0,bz) = bounds za
-- Removed some of the "indexitis" at the cost of calling another function. search3 :: (Ord a) => Int -> (Array Int a, Array Int a, Array Int a) -> (Int,Int) -> (Int,Int) -> (Int,Int) -> a search3 k (xa,ya,za) (lx,rx) (ly,ry) (lz,rz) | lx == rx && ly == ry = za ! (k+lz) | ly == ry && lz == rz = xa ! (k+lx) | lx == rx && lz == rz = ya ! (k+ly)
| lx == rx = search k (ya,za) (ly,ry) (lz,rz) | ly == ry = search k (xa,za) (lx,rx) (lz,rz) | lz == rz = search k (xa,ya) (lx,rx) (ly,ry)
| otherwise = case (xa ! mx < ya ! my, xa ! mx < za ! mz, ya ! my < za ! mz) of (True, True, True) -> smallest3h k (xa,ya,za) ((lx,mx,rx),(ly,my,ry),(lz,mz,rz)) -- a smallest3h k (xa,za,ya) ((lx,mx,rx),(lz,mz,rz),(ly,my,ry)) -- a
smallest3h k (ya,xa,za) ((ly,my,ry),(lx,mx,rx),(lz,mz,rz)) -- b smallest3h k (ya,za,xa) ((ly,my,ry),(lz,mz,rz),(lx,mx,rx)) -- b smallest3h k (za,xa,ya) ((lz,mz,rz),(lx,mx,rx),(ly,my,ry)) -- c smallest3h k (za,ya,xa) ((lz,mz,rz),(ly,my,ry),(lx,mx,rx)) -- c where mx = (lx+rx) `div` 2 my = (ly+ry) `div` 2 mz = (lz+rz) `div` 2
-- Here the sorted arrays are in order by their middle elements. -- Only cutting the leading or trailing array by half.
-- Here xa is the first array, ya the second array, and za the third array by their middle elements. smallest3h :: (Ord a) => Int -> (Array Int a, Array Int a, Array Int a) -> ((Int,Int,Int),(Int,Int,Int),(Int,Int,Int)) -> a smallest3h k (xa,ya,za) ((lx,mx,rx),(ly,my,ry),(lz,mz,rz)) = case (k<=mx-lx+my-ly+mz-lz) of (True) -> search3 k (xa,ya,za) (lx,rx) (ly,ry) (lz,mz) (False) -> search3 (k-(mx-lx)-1) (xa,ya,za) (mx+1,rx) (ly,ry) (lz,rz)
-- -- Regards, KC
_______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://www.haskell.org/mailman/listinfo/haskell-cafe