
Hi,
Actually, if you really want folds, you should use regular [1] instead.
Here's an example of
a generic fold using regular:
-- Datatype representing logical expressions
data Logic = Var String
| Logic :->: Logic -- implication
| Logic :<->: Logic -- equivalence
| Logic :&&: Logic -- and (conjunction)
| Logic :||: Logic -- or (disjunction)
| Not Logic -- not
| T -- true
| F -- false
deriving Show
-- Instantiating Regular for Logic using TH
$(deriveAll ''Logic "PFLogic")
type instance PF Logic = PFLogic
l1, l2, l3 :: Logic
l1 = Var "p"
l2 = Not l1
l3 = l1 :->: l2
-- Testing folding
ex7 :: Bool
ex7 = fold (alg (\_ -> False)) l3 where
alg env = (env & impl & (==) & (&&) & (||) & not & True & False)
impl p q = not p || q
Cheers,
Pedro
[1] http://hackage.haskell.org/package/regular-0.3.4.2
On Sat, Mar 30, 2013 at 7:36 PM, Roman Cheplyaka
The solution to this problem is called "scrap your boilerplate". There are a few libraries that implement it, in different variations.
Let me show you how to do it using my library, 'traverse-with-class'. You'll need install it and the 'tagged' package to run this example.
{-# LANGUAGE TemplateHaskell, ImplicitParams, OverlappingInstances, MultiParamTypeClasses, ConstraintKinds, UndecidableInstances #-}
import Data.Generics.Traversable import Data.Generics.Traversable.TH import Data.Proxy
data Expr = Add Expr Expr | Sub Expr Expr | Mul Expr Expr | Eq Expr Expr | B Bool | I Int deriving Show
-- derive a GTraversable instance for our type deriveGTraversable ''Expr
-- class to perform our operation class IntToBool a where intToBool :: a -> a
-- case for expressions: no recursion, we care only about the one level. -- The "everywhere" function will do recursion for us. instance IntToBool Expr where intToBool (I x) = B $ if x == 0 then False else True intToBool e = e -- default case for non-I constructors
-- default case for non-expression types (such as Int): do nothing instance IntToBool a where intToBool = id
-- the final implementation replaceIntByBool :: Expr -> Expr replaceIntByBool = let ?c = Proxy :: Proxy IntToBool in everywhere intToBool
Roman
Dear all,
I was wondering whether it was possible to write fold expressions more elegantly. Suppose I have the following datastructure:
data Expr = Add Expr Expr | Sub Expr Expr | Mul Expr Expr | Eq Expr Expr | B Bool | I Int deriving Show
type ExprAlgebra r = (r -> r -> r, -- Add r -> r -> r, -- Sub r -> r -> r, -- Mul r -> r -> r, -- Eq Bool -> r, -- Bool Int -> r -- Int )
foldAlgebra :: ExprAlgebra r -> Expr -> r foldAlgebra alg@(a, b, c ,d, e, f) (Add x y) = a (foldAlgebra alg x) (foldAlgebra alg y) foldAlgebra alg@(a, b, c ,d, e, f) (Sub x y) = b (foldAlgebra alg x) (foldAlgebra alg y) foldAlgebra alg@(a, b, c ,d, e, f) (Mul x y) = c (foldAlgebra alg x) (foldAlgebra alg y) foldAlgebra alg@(a, b, c ,d, e, f) (Eq x y) = d (foldAlgebra alg x) (foldAlgebra alg y) foldAlgebra alg@(a, b, c ,d, e, f) (B b') = e b' foldAlgebra alg@(a, b, c ,d, e, f) (I i) = f i
If I am correct, this works, however if we for example would like to replace all Int's by booleans (note: this is to illustrate my problem):
replaceIntByBool = foldAlgebra (Add, Sub, Mul, Eq, B, \x -> if x == 0
* J. J. W.
[2013-03-30 19:45:35+0100] then B False else B True)
As you can see, a lot of "useless" identity code. Can I somehow optimize this? Can someone give me some pointers how I can write this more clearly (or with less code?) So I constantly don't have to write Add, Sub, Mul, for those things that I just want an "identity function"?
Thanks in advance!
Jun Jie
_______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://www.haskell.org/mailman/listinfo/haskell-cafe
_______________________________________________ Haskell-Cafe mailing list Haskell-Cafe@haskell.org http://www.haskell.org/mailman/listinfo/haskell-cafe